PART I

Programming the Apache
Lifecycle

Now that you have been exposed to the mod_perl API, you
might be scratching your head somewhat, asking “All this is
nice, but now what do I do with it?” In order to leverage the
full power of the Apache framework, you need to undergo a
rather intense (and perhaps difficult) paradigm shift—just about
everything about the way Apache works is now at your disposal
and (potentially) under your control. Sometimes, knowing
where to start is difficult.

This final part of the book explains the parts of the Apache
lifecycle in detail: what the typical function of the phase is, what
it is typically used for, and how you can mold it to your every
whim in order to produce rather dramatic effects. Although we
have touched on most of these phases to varying degrees, and
you may already have a basic understanding of Apache’s pre-
fork architecture, now it is time to roll up our sleeves and get
into the gory details.

To begin, this figure is an overview of the Apache (Unix)
lifecycle from the point of view of the Perl module that contains
your mod_per] handler.

378

MOD_PERL DEVELOPER’S COOKBOOK

| #apachectl start |

C PerlModule)
v

C DIR_CREATE)
v

C SERVER_CREATE)

restart

CSome Custom Directiva

C SERVER_MERGE)

DIR_MERGE)

C PerIRestartHandIer)

C PerIChiIdInithandIer)

J HTTP Request

v

(PerlCIeanupHandler) (PerlPostReadRequestHandIeD

Wl N
C PerlLogHandler) C DIR_MERGE)
7 N
C PerlHandler) C PerITransHandler)
/ N
(PerlFixupHandler) (DIR_MERGE)
N\ 4

C PerlTypeHandler) G’erlHeaderParserHandleD

C PerlAuthzHandler) CPerIAccessHandIer)

PerlAuthenHandler

PART Il Programming the Apache Lifecycle

The first time your handler will get a chance to enter into the Apache lifecycle is when
it is loaded with a Per1lModule directive. This is the place where modules get to call
any code they want to execute before any requests are processed: specifically, the code
that exists in your module but outside of any subroutine. Recipe 8.3 shows an effective
use of this initialization stage for creating a global shared memory cache. Keep in
mind that, unlike the initializer hook provided to Apache C extension modules,
handler initialization code will zot be run when Apache is restarted unless you
configure PerlFreshRestart On.

After your module is loaded and its initialization code run, things usually die down
until request time. However, as we demonstrated in Recipes 7.8 and 7.10, mod_perl
also offers the ability to enter into Apache’s configuration creation and merge phases
using directive handlers. The directive handler cycle is rather complex and the recipes
in Chapter 7 that discussed it only really told part of the story. Now it is time to roll
up our sleeves somewhat.

The first thing that happens when you implement a directive handler is that the per-
server and per-directory entries for the module’s namespace are created. mod_perl
takes care of this behind the scenes when the module is loaded and before any of your
module’s custom configuration directives are seen. This is one of the reasons why you
need to use the PerlModule directive to load your module before any of your custom
configuration directives.

Next, Apache parses the directive itself, at which point mod_perl steps in and claims
responsibility for the directive. The actual implementation of the directive is passed off
from mod_perl proper to the Perl module registered to handle the directive. The
directive subroutine is entered, where it can access either the per-server or per-
directory configuration object and store its data.

As Apache traverses httpd.conf, it creates per-server objects for the main server and
for each virtual server where the custom directive exists. Apache also creates a per-
directory object for each directory where the custom directive is configured, as well as
for any place where a per-directory directive exists on a per-server level. In the case of
mod_perl directive handlers, the SERVER_CREATE () and DIR_CREATE () routines are used
for this purpose if defined. As a final step, the per-server and per-directory entries are
merged using the SERVER_MERGE () and DIR_MERGE () routines and the configuration
process is complete.

At this point, Apache tosses the configuration it just worked out and starts parsing the
configuration file all over again. Although it sounds strange, there are historical
reasons for this. It is mainly done to ensure that Apache (or, more correctly, modules

379

380

MoD_PERL DEVELOPER’S COOKBOOK

loaded into Apache) can survive a restart, but also just in case Apache is started with a
-d option that differs from the ServerRoot directive found in the configuration file
itself. The upshot of this double initialization is that Apache is now considered to be
restarting, so the next thing to happen is that the PerlRestartHandler is run, giving
you a hook into server initialization.

Under the current pre-fork model, the Apache parent process does not actually
process any requests but instead forks off a number of child httpd processes that
serve the incoming requests. For each child process that is spawned, a
PerlChildInitHandler is run, after which Apache is ready to receive and process
requests.

When a client initiates a request, an Apache child process steps up and the request
cycle is entered. The Apache request cycle consists of a number of different phases,
many of which have distinct and easily distinguishable purposes. However, a few are
not as intuitive as one would like. Furthermore, some phases run all configured
handlers until no more remain, whereas others terminate the phase on the first hint of
success. It is these differences that make the request cycle somewhat intimidating at
first, but hopefully something that the recipes in this Part can clarify.

Each of the chapters in this final Part explains a distinct part of the request cycle.
However, it makes sense to see how they interact as a whole so we can sprinkle in
some explanation that may not be clear upon examination of the phases individually.

The first thing that happens when Apache receives a request is that it parses the
incoming HTTP message: the request line, incoming headers, and message body.
Each of these parts is placed into the Apache request record where it can be accessed
via the API during the phases to follow.

After the request record is created and populated, Apache begins to run the various
phases of the request cycle. The first chance a Perl handler gets to operate on the
request is with a Per1PostReadRequestHandler, where you can pre-process the request
before any other phase gets the chance to see the incoming URI. After this initial
chance for processing, the URI enters into the filename translation phase. Believe it or
not, you can actually control the way that Apache maps the incoming URI to a
physical file on the filesystem by installing a Per1TransHandler, which is sometimes
quite a handy thing to be able to do.

After URI translation is complete, Apache knows to which <Directory>, <Location>,
or similar container the request belongs. At this point, if Apache sees a custom
directive within the container, it will run the DIR_MERGE() subroutine from your
module to merge the configuration of the container with that of any parent (or of any

PART Il Programming the Apache Lifecycle

per-directory configurations that reside on a per-server level). Depending on your
configuration, you may see Apache call your directory merger both before and after
URI translation, which is merely a result of how Apache handles the <Location>
directive internally. This should not be of any great consequence, as long as you keep
in mind that DIR_MERGE () can be called more than once per request.

Following URI translation and any per-directory merges, you are offered the ability to
manipulate the request yet again using a PerlHeaderParsertandler. Although this
phase is a bit of a misnomer (it has nothing to do with the actual parsing of the
incoming headers), it actually was implemented within Apache prior to the post-read
request phase, so the name persists for historical reasons. This is the first chance that
you can operate on the request after the filename is known, and the first place to limit
your interaction with requests filtered by <Location> and like directives.

Next comes the point where you get to control who is allowed to have access to your
resources. This happens on three distinct levels. The PerlAccessHandler is for
controlling access based on information contained at a server or connection level,
while the PerlAuthenHandler grants resource access based on knowing the identity of
the user. To get control at even a more granular level, the PerlAuthzHandler is there
to restrict access based on attributes of authenticated users.

After the various access control phases are run, the requested resource is mapped to a
MIME type using a Per1TypeHandler. In reality, this is probably the least-used phase
of the request cycle, in part because the mod_mime C implementation is fast and
efficient. Following MIME-type handling, you get one final chance to step in before
you generate content using the Per1FixupHandler.

The perlHandler is the real workhorse of the Apache request cycle, and it is here
where you will spend most of your time, playing with the various templating modules
and other cool features—content is king, after all. After laboring over the content to
be sent to the client, the PerlLogHandler allows you to log the transaction and the
PerlCleanupHandler to do any end-of-transaction processing.

Throughout each of these phases of the request cycle your handler needs to make
decisions about the return value it will pass back to Apache—the value you choose can
dramatically and drastically alter how Apache processes the remaining handlers for the
request. If you recall from Recipe 3.12, Apache has two classes of response codes. The
internal response codes, OK, DECLINED, and DONE indicate some measure of success.
Anything else, such as FORBIDDEN, REDIRECT or SERVER_ERROR is considered to be an
error from Apache’s point of view. Returning an error code from a handler will force
Apache into its error response cycle immediately, where it will process any configured
ErrorDocuments OF CUStOM €rror responses.

381

382

MoD_PERL DEVELOPER’S COOKBOOK

For the Apache success codes, 0K, DECLINED, and DONE, the path Apache takes is not as
simple. Returning DONE from the Apache request cycle immediately sends the request
to the logging phase. This is typically used to indicate that all content has been
transmitted to the client and that no further handlers are required to run. For the
other two return codes, OK and DECLINED, things are a bit more complex. For the
PerlTransHandler, PerlAuthenHandler, PerlAuthzHandler, and PerlTypeHandler, the
first handler to return 0K ends the phase. For the remaining phases 0K and DECLINED
are essentially the same in that both allow other handlers in the same phase to run—
choosing OK over DECLINED in these latter phases is more about writing
self-documenting code than it is about the effect it will have on the other handlers.

Of course, over time Apache will terminate and spawn new children, so there will be a
few extra PerlChildInitHandlers and PerlChildExitHandlers thrown into the mix, as
well as the occasional PerlRestartHandler when you change configurations and restart
Apache. But although features like directive handlers and PerlChildInitHandlers are
nice tools to have, the bulk of your time will be spent programming and tweaking the
various phases of the Apache request cycle. It is here that you gain access to the
Apache request object and the majority of the methods and techniques discussed in
earlier chapters. For this reason, the majority of this part is spent on examining the
finer points of each of the phases of the Apache request cycle, though the final chapter
does deal jointly with the remaining ancillary phases. Directive handlers are covered
extensively in Chapter 7, and are included in many of the remaining examples.

Hopefully, within these final chapters you will find typical uses for all the request
phases. Additionally, you will find some nonstandard uses that might pique your
interest and send you in new directions. In either case, a more complete understanding
of the Apache lifecycle should result, which will enable you to treat Apache more like
an application server and less like a simple scripting engine.

