CHAPTER 16

The PerlLogHandler and
PerlCleanupHandler

Introduction

We now come to the final phases of the Apache request
lifecycle—the PerlLogHandler and PerlCleanupHandler. The
PerlLogHandler is used for (you guessed it) logging. It allows
you to replace the LogFormat, CustomLog, and other directives
provided by the default mod_log_config with logging routines
specifically designed for your application. No longer do you
have to rely on flat files, pipes, or log rotation scripts to gather
useful Web server statistics.

mod_perl provides the PerlCleanupHandler as a final stage of
the request. Conceptually, the Apache request cycle is complete,
so mod_perl gives you the chance to clean up any Perl leftovers.
A good example of this can be found in the

Apache: :File->tmpfile() method, which adds a handler to the
cleanup pseudo-phase to remove the temporary file it created.

Strictly speaking, the Per1CleanupHandler is not a phase of the
Apache request cycle. The Apache C API provides a way to run
processing at the end of each request, but a C module has to
specifically want this processing to occur—it is not called
automatically. mod_perl provides access to this API in two ways:
the PerlCleanupHandler and the register_cleanup() method

546

MOD_PERL DEVELOPER’S COOKBOOK

PART Ill Programming the Apache Lifecycle

from the Apache class. $r->register_cleanup() is, for the most part, a synonym for
the PerlCleanupHandler, so it can be used interchangeably with the
$r->push_handlers(PerlCleanupHandler => 'My::Cleanup') syntax seen elsewhere.
Note that this differs from the register cleanup() method from the Apache: :Server
class, which is used to run code when the server is restarted or shut down, as shown in
the next chapter.

Because the PerlCleanupHandler is not a true phase, you don’t see many handlers
written exclusively for it. A more frequent and idiomatic approach is illustrated in a
few recipes from previous chapters, such as Recipes 2.11, 4.3, and 8.13. In these
examples, a cleanup routine is pushed onto the PerlCleanupHandler stack to tidy up
after some custom processing.

Another idiomatic use for the Per1CleanupHandler is actually as a replacement for the
PerlLogHandler. Despite its name, the PerlLogHandler is not necessarily the best
phase to insert logging routines, especially ones that are rather process-intensive. As it
turns out, the connection to the client is not actually closed until after the Apache
logging phase is complete. If you have a long-running PerlLogHandler, you might
notice that the browser sits and waits as though it expects more content (as evident
from the moving status bar in some browsers). To get around this minor annoyance
you can install any PerlLogHandler as a Per1CleanupHandler instead. Although there is
no performance improvement at all— in both cases the child has not been released to
serve other requests—logging from a PerlCleanupHandler gives the appearance of a
snappy application.

The recipes in this chapter ought to help you on your quest for meaningful and useful
logs, which are an extremely important facet of a successfully deployed application.

16.1. Logging to a Database

You are getting tired of continually parsing your access_log and want a more flexible
solution.

Technique

Use a PerllogHandler to log directly to a database, then use some creative SQL to
process and warehouse the data.

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler

package Cookbook::Sitelog;

use Apache::Constants qw(OK);

use DBI;
use Time::HiRes qw(time);

use strict;

sub handler {

my $r = shift;

my $user $r->dir_config('DBUSER');
my $pass $r->dir_config('DBPASS');
my $dbase = $r->dir_config('DBASE');

my $dbh = DBI->connect($dbase, $user, $pass,
{RaiseError => 1, AutoCommit => 1, PrintError => 1}) or die $DBI

Gather the per-request data and put it into a hash.
my %columns = ();

$columns{waittime} = time - $r->pnotes("REQUEST_START");
$columns{status} = $r->status;

$columns{bytes} = $r->bytes_sent;

$columns{browser} = $r->headers_in->get('User-agent');
$columns{filename} = $r->filename;

$columns{uri} = $r->uri;

$columns{referer} = $r->headers_in->get('Referer');

$columns{remotehost} = $r->get_remote_host;

$columns{remoteip} = $r->connection->remote_ip;
$columns{remoteuser} = $r->user;

$columns{hostname} = $r->get_server_name;

$columns{encoding} = $r->headers_in->get('Accept-Encoding');
$columns{language} = $r->headers_in->get('Accept-Language');
$columns{pid} = $$;

Create the SQL
my $fields = join "$_,", keys %columns;
my $values = join ', ', ('?') x values %columns;

ierrstr;

547

548 MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

my $sql = qq(
insert into www.sitelog (hit, servedate, $fields)
values (hitsequence.nextval, sysdate, $values)

)

my $sth = $dbh->prepare($sql);
$sth->execute(values %columns);
$dbh->disconnect;

return OK;

}
1;

This class can then be activated with a single line in your httpd.conf:

PerlLogHandler Cookbook::Sitelog

Comments

Although you might be interested in the number of hits your application receives over
time for performance reasons, you can rest assured that your marketing department is
far more interested in things such as which pages are hit most frequently, impressions
per unique user, and which URL brought the user to the site. Unless you want to slice
and dice your plain Apache access_log in a myriad of ways to meet (changing)
marketing requirements, you might want to consider logging requests directly to a
database and creating reports using SQL queries.

The solution code is a simple PerlLogHandler that extracts some interesting data from
the request and inserts it into a table. The table and sequence for this handler was
created using the following Oracle-specific SQL, which you can alter to serve the
needs of your application and/or platform. You will want to choose the size and other
column attributes carefully, and consider using the substr() function from the handler
to help make sure there are no data overflow errors on inserts.

CREATE TABLE WWW.SITELOG (
HIT NUMBER (20) ,
SERVEDATE DATE,
WAITTIME NUMBER(10,2),
STATUS NUMBER (3) ,
BYTES NUMBER(10) ,
BROWSER VARCHAR2(80),

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler

FILENAME VARCHAR2(150),
URI VARCHAR2)
REFERER VARCHAR2)
REMOTEHOST VARCHAR2
REMOTEIP VARCHAR2

(

(150

(150

(

(
REMOTEUSER VARCHAR2 (

(

(

(

0

)5
5),
),
HOSTNAME ~ VARCHAR2(50),
ENCODING VARCHAR2(50)
LANGUAGE ~ VARCHAR2(30)
PID NUMBER (1
)
CREATE SEQUENCE WWw.HITSEQUENCE
INCREMENT BY 1
START WITH 1
MAXVALUE 1.0E28
MINVALUE 1
NOCYCLE
CACHE 20
ORDER

1
1
80
1
3
5
5
3
)

A few modules on CPAN perform similar functions, such as Apache: :DBILogger and
Apache: :DBILogConfig, but to create a really useful activity log you will want to define
fields that make sense to your application and environment. Here, for instance, we
took advantage of the PerlPostReadRequestHandler described in Recipe 11.3 to obtain
a very granular measurement of the time between the start of the request and when
the user is able to view the completed page. If you are into exception handling, you
might want to create a column that stores a pnotes () string set by the exception
routine so you can track the exact cause of every error and investigate those that seem
to happen frequently. Tracking query strings or skipping logging altogether for images
is just as easy after you have the basic framework established—the possibilities are
endless and can be custom tailored to your exact needs.

The main benefit in logging to a database is that all the information about the activity
of the application is available to you via some relatively simple SQL. For instance, the
Cookbook: :LogChart module from Recipe 15.1 uses the table we created here to render
a simple bar chart of requests per hour that can be used to spot peak activity periods.
Other trends that might be of interest are the number of users who have their
browsers configured to a language other than the default for the application (which
might indicate that you are wasting CPU cycles on unnecessary content negotiation),
shifts in browser preferences (that could wreck your DHTML), daily 404 reports, and
more.

549

550

MOD_PERL DEVELOPER’S COOKBOOK

PART Ill Programming the Apache Lifecycle

The real disadvantage to this approach is that any database activity is process-
intensive, so logging to a database means that the httpd child process is not being
freed to serve the next request as quickly as it would when writing to a flat file. This is
definitely a consideration, as it affects the overall performance of your application, but
using a persistent database connection through Apache: :DBI or other means should
lessen the blow. You will also want to consider scheduled jobs to warehouse the data in
your ever-growing tables as well as proper indexes to speed up frequent queries. If
your database platform supports precompiled stored procedures, using them instead of
raw SQL will also improve performance and help keep the insert overhead to a
minimum.

16.2. Logging to a Flat File

You do not want to log to a database but you still want to have the control a
PerlLogHandler offers.

Technique

Install and use the Apache: :LogFile module, available from CPAN. After it is installed,
activate a new logfile by adding a PerlLogFile directive to your httpd.conf. You will
also need to load both the Apache: :LogFile and Apache::LogFile: :Conf classes,
included with the distribution, using the PerlModule directive.

PerlModule Apache::LogFile
PerlModule Apache::LogFile::Config

PerlLogFile logs/detailed_log Cookbook::LogHandle

This binds the file logs/detailed_log to the Perl filehandle Cookbook: : LogHandle.
You could just simply print() to that filehandle; however, to make life easier we can
create an object-oriented abstraction for our logging. The sample module
Cookbook: :DetailedLog provides just that.

package Cookbook::DetailedLog;
use Apache::Constants qw(OK);

use Time::HiRes qw(gettimeofday tv_interval);

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler 551

use strict;
sub handler ($$) {

my $this = shift;
my $class = ref $this || $this;

my $r = shift || Apache->request();

my $self = {};
$self->{_start} = [gettimeofday];
$self->{_request} = $r;

bless $self, $class;
$r->pnotes('DETAILED LOG', $self);

return OK;

sub DESTROY {
my $self = shift;

my $r = $self->{_request};
my $entry = join(' ',
$3,
$r->uri,
time(),
tv_interval($self->{_start})

);

print Cookbook::LogHandle $entry;

}
E

To use Cookbook: :DetailedLog, simply add it to the previous httpd.conf configuration
as a PerlPostReadRequestHandler or a PerlFixupHandler depending on whether you
want to enclose it within a <Location> or <Directory> container.

<Location /bannerads>

PerlFixupHandler Cookbook::DetailedLog
</Location>

552

MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

Comments

Apache’s built-in file logging is simple and good. However, life isn’t simple and
sometimes you need to write very specialized log files for specific purposes. You could
try doing this yourself, but the complexities of opening and closing log files in a multi-
process Apache server are, shall we say, difficult. Instead, using the CPAN module
Apache::LogFile is quite simple. Apache: :LogFile binds a log file or log process to a
Perl filehandle. After you have the filehandle you can simply print things to it. This is
great for little things like debug logs, all the way to specialized log formats.

In our example we bind the file logs/detailed_log to the Perl filehandle

Cookbook: :LogHandle. We chose a regular file to log to, but it could just as easily have
been a piped log script, just like Apache’s logging system. With the binding complete,
we can now send data to the file using a simple print statement from within our
custom handlers, like

print Cookbook::LogHandle 'This goes into logs/detailed_log -- hey!'

"To add to the functionality of Apache: :LogFile you can define your own logging
object. For this recipe we define Cookbook: :DetailedLog that saves away the request
and the exact time the request started (using the Time: :HiRes module, available on
CPAN). Our Perl method handler can be configured either as a
PerlPostReadRequestHandler or a PerlFixupHandler, depending on whether you want
to use it for all requests or just a smaller subset of requests. Keep in mind that when
used as a PerlFixupHandler the time you are measuring is essentially the time taken to
process the content handler and not the entire request. Either way, it creates a new
logging object, which we store away using the pnotes() method to make sure it does
not disappear too soon.

The object is largely forgotten until the request is being destroyed at the end of the
Apache request cycle. At this point Perl will try to deallocate our logging object. We
are clever and use Perl’s built-in concept of the DESTROY () method to call code when
this happens, letting DESTROY () do the actual logging of data. This ensures we don’t
forget to do it, and allows us to delay logging to the last possible moment. It also gives
us an accurate time stamp for calculating the total request processing time, should we
choose to use our class from a PerlPostReadRequestHandler.

The final step in our DESTROY () method is the actual print call. In this example we
print the process ID, the request URL, the Unix time stamp, and the detailed
transaction time in seconds. A sample looks like this:

30323 /xml/captains.html 1001900224 0.438851
30324 /xml/pirates.html 1001900228 0.120550

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler 553

16.3. Altering the Request-Line

You want to change the request URI caught by the default CustomLog and LogFormat
directives. You might need this in cases where you have altered the URI through
$r->uri() and want your Apache logs to record the altered URI instead of the
requested URI.

Technique

Alter the value of the HT'TP Request-Line Apache stores internally using the
the_request () method from the Apache class to match the new URL.

We assume that request URI was altered previously,

such as from a PerlTransHandler. $r->uri() now contains
something different than the client request URI.

my $uri = $r->uri;

Now, make logs to the access_log match the new URI.
(my $request line = $r->the_request) =~ s/ (.*) / $uri /;
$r->the _request($request line);

Comments

If you have chosen to forego some of the more interesting ways mod_perl allows you
to handle your logging needs, you might be relying on the default access_log
behavior to track traffic on your application. The default logging configuration for
Apache looks like

LogFormat "%h %1 %u %t \"%r\" %>s %b" common
CustomLog /usr/local/apache/logs/access_log common

which is perfectly fine—unless you use a PerlTransHandler to alter the requested URL
The problem is that %r returns the value of the HT'TP Request-Line. The Request-
Line is stored in the the_request slot of the Apache request record and might look

like
GET /index.html HTTP/1.1
The value stored in the_request exists independently of the uri slot of the request

record— if you make changes to the URI behind the scenes using $r->uri(), the URI
in %r still represents the actual request, not the resource that was actually served.

554 MoD_PERL DEVELOPER’S COOKBOOK

PART Ill Programming the Apache Lifecycle

If you are more interested in logging the client request than the served resource, then
this disparity is not a big issue. However, if you want to track impressions for
individual server resources, then %r is not suitable because it does not represent what
the client actually saw. This becomes a real issue with the combined log format, which

uses the value of the Request-Line, and which is relied upon by log analyzers like
WebTrends.

One solution is to modify the value for the Request-Line that Apache has stashed away
directly using the the_request () method, as shown in the solution code. Of course,
you could also just create a new LogFormat comprised of the individual components of
the Request-Line

LogFormat "Sh %1 %u %t \"Ssm %U %H\" %>s %b" common

but that is not nearly as fun. It also still leaves the main issue unresolved—the URI in
the uri and the_request slots of the Apache request record do not match. Because
other handlers might use the_request in program logic, getting the two to agree can
be important. For instance, mod_rewrite offers the ability to use %{THE_REQUEST} in a
RewriteCond. For this reason, it is probably best to use the solution code when you
actually change the request URI as to not cause any undue problems.

16.4. Logging Nonstandard Data

You would like to use Apache’s built-in logging routines, but you need to log
nonstandard data.

Technique

Set the data you want to log with the subprocess_env() or notes() methods from the
Apache class, then configure your LogFormat line with the appropriate S{NAME}e or
%{NAME}n entries.

LogFormat "Sh %1 Su %t \"%r\" %>s %b %{TOTAL_SECS}e %{SESSION}n" common_timed
CustomLog logs/access_log common_timed

Comments

If you want to log to files on disk or to syslog, you can’t get much better than
Apache’s bundled mod_log_config. It supports all the basic request logging quite well,

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler 555

and it supports a number of extensions that allow you to add your own custom data to

the log files.

One easy way to log your own data is to use the notes() method described in Recipe
8.11. Any value stored in the notes table of the Apache request record can be logged;
all we need to do is set the value and modify the LogFormat directive accordingly. For
example, to log an Apache: :Session generated session ID for the request, we could
stash the session away by calling $r->notes(SESSION => $id), then add this value to
the log file using %{SESSION}n in the LogFormat line, as shown earlier.

An alternative way to pass logging data is done by using Apache’s environment
variables. We can set these by calling the Apache subprocess_env () method, as in

$r->subprocess_env(TOTAL_SECS => time - $r->pnotes('REQUEST_START'))

A corresponding LogFormat entry would be %{TOTAL_SECS}e, as also shown previously.
As already mentioned in Recipe 8.11, the choice of notes() over subprocess_env() is
a matter of personal preference. Note that both of these data elements can be set at
any convenient point as long as it’s before the final logging phase. Output using the
new common_timed format might look like

127.0.0.1 - - [28/Sep/2001:01:55:05 -0700] "GET /index.htm HTTP/1.0" 200 290
=0.018991
127.0.0.1 - - [28/Sep/2001:01:55:08 -0700] "GET /index.html HTTP/1.0" 200 1469

=(0.030349 0x89AE2234==

16.5. Conditional Logging

You want to control the logging behavior of mod_log_config from within mod_perl,
enabling and disabling logging based on certain criteria.

Technique

Use the built-in ability of mod_log_config to conditionally log requests by setting an
environment trigger using the subprocess_env() method from the Apache class.

In your httpd.conf, add:

CustomLog /usr/local/apache/logs/access_log common env=!SKIP

556

MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

Then, use the following snippet in your handler:

$skip_me represents some criterion that means
we do not want to log the request.
$r->subprocess_env->set(SKIP => 1) if $skip_me;

Comments

If you use a PerllLogHandler or PerlCleanupHandler for logging requests, then turning
logging on or off from any point in the request is a simple task. Recipe 8.8 showed
how the handler stack can be reset for any phase by setting the phase to undef.

$r->set_handlers(PerlLogHandler => undef);

Although mod_perl provides the power to manipulate the request handlers at runtime,
this same ability is not carried over for Apache C modules; generally, after you
configure in a C extension module in httpd.conf there is nothing more you can do at
request time. The rare exception to this is mod_log_config, which recognizes that you
might want to conditionally log a request and offers a way to control whether the
logging routine runs.

"Traditionally, dynamically controlling logging is handled by coupling mod_log_config
with modules such as mod_setenvif or mod_rewrite. The CustomLog directive has a
conditional aspect to it that allows you to toggle logging based on environment
variables. For instance, the following configuration allows you to skip the logging
request for the pesky favicon.ico using mod_rewrite to set the SKIP environment
variable:

CustomLog /usr/local/apache/logs/access_log.skip common env=!SKIP

RewriteEngine On
RewriteRule (/favicon\.ico$) $1 [E=SKIP:1]

As discussed in Recipe 8.10, Apache C modules do not really manipulate %ENV so much
as they populate the subprocess_env table in the Apache request record and rely on
other processes to pass that on to %ENV. This also works in the opposite direction—you
cannot set a value in %ENV at request time and expect an Apache C module to be able
to see it, so setting $ENV{SKIP}=1 from a handler would not have the same effect as the
preceding configuration. This makes it difficult to control conditional logging based
from a traditional CGI environment without relying on mod_setenvif or mod_rewrite
to populate the subprocess_env table. With mod_perl we are not as limited.

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler 557

mod_log_config follows the same path as mod_setenvif and mod_rewrite in that it is
really looking from a value in the subprocess_env table rather than a true environment
variable. By setting $r->subprocess_env () directly, we can use our module in place of
mod_setenvif or mod_rewrite. This, coupled with the conditional configuration
showed in the solution, allows us to skip over mod_log_config using any request time
criteria we choose.

16.6. Intercepting Errors

You want to insert custom processing for the error_log similar to the way the
PerlLogHandler allows for the access_log.

Technique

Use low-level Apache routines to redirect errors to a file of your choosing.

The following handler illustrates the use of a new class, Cookbook: :DivertErrorLog,
which is detailed in the following discussion.

package Cookbook::ErrorsToIRC;

use Apache::Constants qw(OK);
use Apache::File;

use Cookbook::DivertErrorLog gw(set_error_log restore_error_log);

use Net::IRC ();
use Sys::Hostname ();

our ($irc, $host);
use strict;
sub handler {

my $r = shift;

Create a temporary file for holding the errors for this request.
my $fh = Apache::File->tmpfile;

558 MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

Store away the filehandle for later.
$r->pnotes (ERROR_HANDLE => $fh);

Push our log routine if we can divert the error_log to our file.
$r->register_cleanup(\&send_to_irc) if set_error_log($fh);

return OK;

sub send_to_irc {
my $r = shift;
my $irc_host = $r->dir_config('IRCHost') || 'localhost';

Net::IRC->new();
= Sys::Hostname::hostname();

Restore the original error_log.

We do this so that the true Apache error_log captures
any errors from our processing here.

my $error_log = restore_error_log;

Get the error filehandle we created earlier.
my $fh = $r->pnotes('ERROR_HANDLE'");

seek($fh, @0, 0); # rewind
Open an IRC connection and send the diverted

error log across. This is all pretty standard
Net::IRC stuff.

my $conn = $irc->newconn(Nick => "log-$%$",
Server => $irc_host,
Port => 6667,

Ircname => "Apache Log Bot $$ on $host");
$conn->add_global_handler('376', \&on_connect);
$irc->do_one_loop;

$conn->privmsg('#logs', ('error_log for', $r->uri));

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler 559

while (my $line = <$fh>) {
$conn->privmsg('#logs', $line);

$conn->quit();

return OK;

sub on_connect {
Callback for the Net::IRC object.

my $self = shift;

$self->join('#logs');
}
1;

Comments

Unfortunately, although both Apache and mod_perl offer a nice, clean hook into the
logging site access, neither provides a reasonable interface into the error-logging
process. Of course, you can always define ErrorLog as a pipe and process errors that
way. However, in doing so you are still left without the transactional concept of a
single request, because simultaneous requests will interlace their error output. To
process errors on a per-request level, we need a hook into the error-logging process
itself.

Intercepting messages sent to the error_log is actually more involved than you might
think at first. A simple solution is shown in Recipe 4.5, which uses $s->error_fname ()
to retrieve the name of the file specified by the ErrorLog directive and process that file
directly. Although just reading in the error file and writing the results somewhere else
is a relatively simple task, knowing exactly how many lines to slurp and write out is
rather difficult, because a single request can produce many lines of error or diagnostic
messages.

At first, you might want to use a TIEHANDLE interface, as in Recipe 6.10. This, however,
is insufficient for a number of reasons. First, trapping calls to warn() or die() in
current versions of Perl require you to handle $S16{__ WARN__} and $SIG{_ DIE_ } on
a global level, which might interfere with other modules that rely on those signals.
Additionally, a simple tie to STDERR will not capture error messages generated by core

560

MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

Apache—calls like $r->1og_error() or $r->log->warn() write directly to the file
specified by the ErrorLog directive, and internal Apache error messages print to the C
stderr error stream.

Because the usual gambits Perl affords us are not sufficient for intercepting all of these
Apache and mod_perl error message variants, we need to take another approach. The
following solution is the Cookbook: :DivertErrorLog class, which combines some XS
processing with a little Perl to effectively manipulate the place where errors are sent at
request time. This class can then be used in a handler similar to the solution
Cookbook: :ErrorsToIRC module, where errors are collected in a temporary file from
each request and sent to a private IRC channel.

"To fully understand what is going on in our new class, it is important to know the
process Apache uses for its error-logging mechanism. Apache stores two values in the
Apache server record that are important to this process: error_fname, which specifies
the value of the ErrorLog directive, and error_log, which holds a pointer to the open
file or pipe. The file (or pipe) to which Apache will send its errors is opened when
Apache starts and before it spawns any child processes. For us to redirect the error
stream away from, say logs/error_log, we need to replace the error_log value in the
Apache server record with a pointer we control. For our Cookbook: :DivertErrorLog
class, we are limiting ourselves to just a file implementation, which works out rather
nicely as you will see.

As we mentioned, this approach requires both Perl and XS. As with all XS-based
modules, it is best to start with h2xs.

$ h2xs -An Cookbook::DivertErrorLog

Writing Cookbook/DivertErrorLog/DivertErrorLog.pm
Writing Cookbook/DivertErrorLog/DivertErrorLog.xs
Writing Cookbook/DivertErrorLog/Makefile.PL
Writing Cookbook/DivertErrorLog/test.pl

Writing Cookbook/DivertErrorLog/Changes

Writing Cookbook/DivertErrorLog/MANIFEST

Here is DivertErrorLog.pm, which defines our end-user interface.

Listing 16.1 DivertErrorLog.pm

package Cookbook::DivertErrorLog;

use DynaLoader ();
use Exporter ();
use 5.006;

use strict;

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler

our @QISA = gw(DynaLoader Exporter);
our @EXPORT_OK = qgw(set_error_log restore_error_log);
our $VERSION = '0.01';
__ PACKAGE__ ->bootstrap($VERSION) ;
use strict;
sub set_error_log {
my $arg = shift;
The input can be either a filename or an open filehandle.
In either case, we need to isolate a file descriptor
for the file.
my $fd = fileno($arg);
unless (defined $fd) {

(
open(OUT, ">$arg") or return;
$fd = fileno(*OUT);

Call our XS set() routine, passing in an
Apache::Server object and the file descriptor.
set (Apache->server, $fd);

sub restore_error_log {
Call our XS restore() routine, passing in an
Apache::Server object.

restore(Apache->server);

}
E

Cookbook: :DivertErrorLog hnplenlentst“m)functhans:set_error_log() and
restore_error_log(). set_error_log() replaces the current value of error_log in the
Apache server record with a file of your choosing. It can receive either an active
filehandle or a filename. restore_error_log() unplugs the custom log file set by the

561

562

MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

set_error_log() function and replaces it with whatever was removed previously by
set_error_log().

Each of these Perl functions calls an associated XS function defined in
DivertErrorLog.xs, which is dynamically pulled in using DynaLoader. As we
mentioned, we will be directly manipulating the Apache server record. Rather than dig
this record out of thin air, both functions rely on receiving an Apache: :Server object
passed in from the Perl code. This enables us to reduce the amount of XS required
and hides the implementation magic from the end user of our class, which is always a
nice touch.

Although the actual Perl is rather dull, the XS code that does the real work is much
more interesting. Here is DivertErrorLog.xs

Listing 16.2 DivertErrorLog.xs

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#include "mod_perl.h"

static FILE *original_log;
MODULE = Cookbook::DivertErrorLog PACKAGE = Cookbook::DivertErrorLog
PROTOTYPES: ENABLE
int
set(s, fd)
Apache::Server s

int fd

PREINIT:
pool *p;

CODE:
RETVAL = 1;

/* Get a memory pool */
p = perl _get startup_pool();

/* Stash away the pointer to the current error_log */
original_log = s->error_log;

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler

Listing 16.2 (continued)

/*

* Open the new error_log descriptor for writing.

* Make sure the original error_log is restored and
* return undef on failure

*/

if (!(s->error_log = ap_pfdopen(p, fd, "w"))) {
s->error_log = original_log;
XSRETURN_UNDEF ;

/* Make stderr point to the new error_log as well */
dup2(fileno(s->error_log), STDERR_FILENO);

OUTPUT:
RETVAL

char *
restore(s)
Apache::Server s

PREINIT:
char *fname;

CODE:
/* Restore the stashed error_log pointer */
s->error_log = original_log;

/* Point stderr back to the original error_log */
dup2(fileno(s->error_log), STDERR_FILENO);

/* Return the original error_log file, just to be informative */
RETVAL = s->error_fname;

OUTPUT:
RETVAL

The set () function does a few things. It stores away the current error_log file pointer
and resets it to the active filehandle passed in from the Perl routine. To do this, the
function relies on the Apache ap_pfdopen function, defined in alloc.c in the Apache
sources. As it turns out, this function expects a memory pool as the first argument.
Although presenting a full explanation of how Apache memory pools work is outside

563

564

MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

the scope of this book, we chose to get our memory pool from the Perl startup pool
instead of the request pool, keeping with the same memory allocation that Apache
itself gives error_log.

After the error_log field of the Apache server record has been set to point to its new
location, set() needs to do one final thing. As mentioned earlier, to successfully divert
all possible sources of error messages we need to capture writes to the stderr error
stream. stderr receives errors on the Perl side (such as die() and writes to STDERR) as
well as error and debug messages from Apache and mod_perl internals. "To intercept
these types of writes we make stderr point to the same place as s->error_log does,
which should cover all of our bases (as long as STDERR is not tie()d, that is).

restore() is far easier. It simply moves the old value of error_log back to the Apache
server record, and points stderr to the new (old) value of s->error_log for the
reasons just mentioned. As a convenience, it also returns the value of the error_fname
slot of the Apache server record to let you know what value of error_log was restored.

The only items missing to complete our class are the Makefile.PL and typemap files.
The makefile.PL is essentially the same as the other XS-based modules we have
presented so far, but we will show it here for completeness.

Listing 16.3 Makefile.PL for Cookbook: :DivertErrorLog
#!perl

use ExtUtils::MakeMaker;
use Apache::src ();

use Config;

use strict;

my S%config;

$config{INC} = Apache::src->new->inc;

if ($°0 =~ /Win32/) {
require Apache::MyConfig;

$config{DEFINE} ' -D_WINSOCK2API_ -D_MSWSOCK_ ';
$config{DEFINE} .= ' -D_INC_SIGNAL -D_INC_MALLOC '
if $Config{usemultiplicity};

$config{LIBS} =
qq{ -L"$Apache::MyConfig::Setup{APACHE_LIB}" -1lApacheCore } .

CHAPTER 16 The PerlLogHandler and PerlCleanupHandler

Listing 16.3 (continued)
qq{ -L"$Apache::MyConfig::Setup{MODPERL_LIB}" -1lmod_perl};

}

WriteMakefile(
NAME => 'Cookbook::DivertErrorLog',
VERSION_FROM => 'DivertErrorLog.pm',
PREREQ_PM => { mod_perl => 1.26 },
ABSTRACT => 'An XS-based Apache module',
AUTHOR => 'authors@modperlcookbook.org',
sconfig,

);

The typemap file, which converts the incoming Apache: :Server object to an Apache
server record for the XS routine, only contains one element:

Listing 16.4 typemap for Cookbook: :DivertErrorLog

TYPEMAP
Apache::Server T_PTROBJ

After creating all the relevant pieces, all that is left is to run the standard perl
Makefile.PL and friends to install the class and it is ready to go.

This brings us back to the code shown in the solution, Cookbook: :ErrorsToIRC, which
uses our snazzy Cookbook: :DivertErrorLog class to isolate error messages from a
specific part of the request cycle. Where this handler is installed is entirely dependent
upon what you want to log. Install it as a Per1PostReadRequestHandler to capture
errors for the entire request, or as a Per1FixupHandler for the content-generation
phase only.

PerlModule Cookbook::DivertErrorLog

PerlModule Cookbook::ErrorsToIRC
PerlPostReadRequestHandler Cookbook::ErrorsToIRC

There are really only two steps to consider when using the Cookbook: :DivertErrorLog
API: plugging in the new file to begin collecting errors, and restoring the old value of
the ErrorLog directive when we are finished. With ErrorsToIRC.pm, the handler()
subroutine calls set_error_log(), which replaces the current ErrorLog setting with a
temporary file produced by Apache::File->tmpfile(). If set_error_log() returns
success, the send_to_irc () subroutine is added to the PerlcleanupHandler stack using
$r->register_cleanup(). This restores the error_log field of the Apache server

565

566

MoD_PERL DEVELOPER’S COOKBOOK

PART Il Programming the Apache Lifecycle

record to the state in which we found it at the end of the request. The restoration of
the error_log is very important—because the Apache server record has a lifetime
greater than a single request, we want to make certain that subsequent requests to the
same child use the default ErrorLog setting until we specifically choose to override it.

After you have the errors for the request isolated, what you do with them is entirely up
to you. In this case, send_to_irc() then uses the filehandle stored via the pnotes()
method to send collected errors to a private IRC channel using Net: : IRC. As
mentioned in Recipe 6.2, Apache: :File->tmpfile() ensures that the temporary file is
indeed removed at the end of the request.

The end results are per-request errors nicely printed to a private IRC channel,
enabling support staff to easily monitor the status of the server from just about
anywhere. Although what we have described here is rather complex and not really
recommended for production sites, it hopefully has managed to introduce some of
the more interesting and powerful possibilities that arise when mod_perl is coupled
with XS.

