
CHAPTER 7

Creating Handlers

Introduction

Some of the recipes in the preceding chapters illustrated
concepts by using a complete handler as the example, and a few
others fully enclosed a handler within a module. Although the
term handler generally refers to the handler() subroutine, the
colloquial meaning includes the details of the module that
implements the handler. It is this more inclusive meaning that
we are examining here—the mod_perl handler as an entity that
interacts with a part of the Apache lifecycle, complete with all
the bells and whistles.

What makes handlers so powerful is their ability to actually
modify how Apache behaves at the server level—the perl
interpreter that runs your mod_perl handler is embedded in
Apache and uses the Apache API to interact with base server
functions. You can choose to override default server behaviors,
insert new functionality, or do nothing and let Apache continue
doing what it does best. This is completely different from other
models, such as SSI, CGI, ASP, and the various Java-based
tools, which rely on mechanisms isolated from the actual
operation of the server. With mod_perl handlers, functionality
that is difficult or impossible for these other platforms becomes
rather easy, now that you have the ability to program within
Apache’s framework instead of around it.

D E V E L O P E R ’ S C O O K B O O K

10 0672322404 CH07 10/31/02 2:28 PM Page 209

210 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

In its most fundamental form, a mod_perl handler is a Perl module that contains (at
least) a single subroutine named handler(). This subroutine code is executed during a
specific phase of the Apache lifecycle and can be used to create content, alter server
behavior, and just about anything else for which the Apache API provides an interface.

The Introduction to Part II provides a basic introduction to handlers and how they
interact with the Apache lifecycle at a high level. Part III will expand on that concept
further and get into the details of applying handlers to specific operational phases.
This chapter presents the fundamentals of creating and configuring handlers so you
can fully leverage the mod_perl API. If you have thus far found the notion of a handler
to be a bit esoteric, this chapter should solidify things and get you well on your way.

7.1. Creating a mod_perl Handler

You want to create a mod_perl handler.

Technique

Create a Perl package with a subroutine named handler().

package Cookbook::Clean;

use Apache::Constants qw(OK DECLINED);

use Apache::File;

use Apache::Log;

use HTML::Clean;

use strict;

sub handler {

my $r = shift;

my $log = $r->server->log;

unless ($r->content_type eq ‘text/html’) {

$log->info(“Request is not for an html document - skipping...”);

return DECLINED;

}

10 0672322404 CH07 10/31/02 2:28 PM Page 210

211CHAPTER 7 Creating Handlers

my $fh = Apache::File->new($r->filename);

unless ($fh) {

$log->warn(“Cannot open request - skipping... $!”);

return DECLINED;

}

Slurp the file (hopefully it’s not too big).

my $dirty = do {local $/; <$fh>};

Create the new HTML::Clean object.

my $h = HTML::Clean->new(\$dirty);

Set the level of suds.

$h->level(3);

Clean the HTML.

$h->strip;

Send the crisp, clean data.

$r->send_http_header(‘text/html’);

print ${$h->data};

return OK;

}

1;

__END__

=head1 NAME

Cookbook::Clean - Apache content handler that cleans HTML of cruft

=head1 SYNOPSIS

DocumentRoot /usr/local/apache/htdocs

PerlModule Cookbook::Clean

<Directory /usr/local/apache/htdocs>

SetHandler perl-script

PerlHandler Cookbook::Clean

</Directory>

=head1 DESCRIPTION

10 0672322404 CH07 10/31/02 2:28 PM Page 211

212 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

Cleans HTML by “scrubbing the deck” of redundant

whitespace and other useless data. This is basically a

mod_perl interface into HTML::Clean.

=cut

Comments

You might have noticed that the preceding chapters have already made rather
elaborate use of handlers. Hence, instead of the typical jaded introductory “Hello
World!” example, here you will find a simple yet useful mod_perl handler. The
handler you see in this recipe is a content handler that is installed as a PerlHandler. It
sends the requested file to the client after removing all the unsightly HTML added by
modern WYSIWYG editors.

A handler is just a handler() subroutine contained within a standard Perl module.
There really is not much special about it compared to your standard run-of-the-mill
Perl module, other than the handler contains code designed to use the features and
syntax of the mod_perl API. Actually, the subroutine neither has to be named
handler() nor be in a module—it really can be any subroutine in a named package, as
you will see later. The best way to get a feel for a typical mod_perl handler is to go
through the preceding example. Most of this should not be new to anyone already
familiar with writing Perl modules, but because modules are such an integral part of
mod_perl and provide the foundation for nearly all that the mod_perl programmer
does, we can afford to spend some time on the basics here.

First you need to decide on a name for your module. In this example we chose the
name Cookbook::Clean, referring to the way we “clean” all the excess whitespace and
gratuitous use of grandiose tags found in a typical HTML document. For internal
applications, sticking to a separate yet appropriate namespace is best, such as the name
of your project or company (hence our Cookbook:: designation). The Apache::
namespace designation on CPAN means that the module is not intended for use
outside of the mod_perl environment. This is merely a convention, but a good one to
adopt, especially if you intend to release your module publicly. You will want to come
up with your own witty yet descriptive name for your module.

Next create the file corresponding to the module, along with any necessary directories.
In the preceding case we would create the file Clean.pm located in a Cookbook/
directory someplace where mod_perl can see it. Recipe 2.10 discusses how to maintain
module libraries and the several places where mod_perl can find them by default. For
a single module that does not include a Makefile.PL, a simple solution is to just place

10 0672322404 CH07 10/31/02 2:28 PM Page 212

213CHAPTER 7 Creating Handlers

it somewhere beneath the Apache ServerRoot, say
/usr/local/apache/lib/perl/Cookbook/Clean.pm.

Add to this file a standard Perl module skeleton, beginning with a package declaration
that matches the name of your file (and directory if necessary). If you plan on writing
maintainable code, you should add the line use strict; to catch common
programming errors. Because all Perl modules need to return a true value, ending the
code with 1; is customary. And everybody loves documentation, so be sure to include
some.

Now, somewhere in the middle of all this is where we depart from a standard Perl
module. Because this is mod_perl, we start by pulling in a few common Apache
modules: Apache::Constants, Apache::File, and Apache::Log, each of which ought to
be familiar by now. Next we pull in the CPAN module HTML::Clean, which does the
actual scrubbing; our Cookbook::Clean module merely provides a simple interface
to it.

Now we come to the all-important handler() subroutine, which is called by mod_perl
at request time. The typical handler starts by reading the standard Apache request
object parameter into the $r variable. Because this is of little use in and of itself, we
add some processing that does some typical mod_perl things, such as checking
whether the request is for an HTML document before actually operating on the file
and sending proper HTTP headers. The nonstandard part of the code is what makes
our handler unique; the contents of the requested file are passed to HTML::Clean,
where they are polished to a Perly white and sent to the client.

Throughout the handler we make certain to pass an appropriate response code back to
mod_perl, either DECLINED if we are passing control back to the core Apache content
handler, or OK if everything went as planned.

When all is said and done, you will want to configure your new handler so that
mod_perl knows what to do with it at runtime. When the handler is actually executed
depends on the way it is implemented in httpd.conf. Our documentation says to use it
as a PerlHandler, which signifies that it will be responsible for the content-generation
phase of the request. In our case, we map the URI location /clean to DocumentRoot
and pass the file through our PerlHandler, allowing end users to see cluttered or clean
HTML, depending on the URL they enter in their browser.

PerlModule Cookbook::Clean

Alias /clean /usr/local/apache/htdocs

<Location /clean>

SetHandler perl-script

PerlHandler Cookbook::Clean

</Location>

10 0672322404 CH07 10/31/02 2:28 PM Page 213

214 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

Although this example is relatively simple, the handler serves a clearly defined purpose
and leverages the power of other Perl modules to do most of the work. After you get a
feel for how to write basic mod_perl handlers, you will begin to see an entirely new
programming world, rife with possibilities, applications, and elegant solutions to
problems practically impossible using conventional CGI.

7.2. Basic Handler Configuration

You want to customize the behavior of your handler without changing the source code
on a regular basis.

Technique

Add PerlSetVar and/or PerlAddVar directives to your httpd.conf then use
dir_config() method from the Apache class to access them.

In httpd.conf, add

PerlModule Cookbook::Clean

<Location /clean>

SetHandler perl-script

PerlHandler Cookbook::Clean

PerlSetVar CleanLevel 3

PerlSetVar CleanOption whitespace

PerlAddVar CleanOption shortertags

</Location>

Now, make some slight alterations to your module to use the configured values:

Set the level of suds.

$h->level($r->dir_config(‘CleanLevel’) || 1);

my %options = map { $_ => 1 } $r->dir_config->get(‘CleanOption’);

Clean the HTML.

$h->strip(\%options);

10 0672322404 CH07 10/31/02 2:28 PM Page 214

215CHAPTER 7 Creating Handlers

Comments

You have many ways to separate configuration information from your module, most of
which are unmaintainable. Alternatively, asking the user of your module to modify the
source or even create a configuration file is a terrible burden. The best place to
configure your mod_perl module is inside Apache’s httpd.conf file.

As already discussed in Recipe 2.14, back in the days of straight CGI, the only scalable
solution for script configuration variables was to make use of %ENV using SetEnv,
/etc/profile, or other similar methods. If there is nothing of importance you needed
to store, then this is (almost) acceptable, but for controlling things like database
passwords, the %ENV alternative is almost criminally negligent, since any rogue user
capable of running a CGI script can see your passwords. With mod_perl, you have two
new options: PerlSetVar for setting simple Perl variables, and PerlAddVar for pushing
data onto an array.

Both PerlSetVar and PerlAddVar inherit all of Apache’s configuration sophistication,
including the ability to use <Directory> or <Location> section for fine-grained control
over configuration options, conditional configuration using <IfDefine>, virtual host
merging, and more.

The first step in configuring your handler is defining what the user can change or
override. After you’ve done that, you need to give each configuration variable a name.
You might want to give your variables a special prefix, like we’ve done: All the options
we use will start with Clean.

Next we modify our script to use the new variables. Our original Clean.pm hardcoded
the behavior of the HTML::Clean object, which is certainly not ideal. Here, we give the
user a choice while providing some defaults. Note the || 1 construct; this ensures that
the call to $h->level() is always set to something meaningful, even if no configuration
information was provided.

Although the single configuration value interface provided by PerlSetVar is nice (and
more common), many situations exist where you might want to support multiple
values without creating a large quantity of singular variable names. In this case,
PerlAddVar offers an elegant solution, although it uses a slightly different interface.

In Recipe 3.14 we introduced the Apache::Table class and stressed the importance of
understanding this class well. As it turns out, the underlying data object for both
PerlSetVar and PerlAddVar is an Apache::Table object, so having a solid
understanding of the class and its accessor methods will help you here.

If you looked carefully at the example configuration, you saw that PerlSetVar was used
both to set a single value for CleanLevel and to initialize the array for CleanOption.

10 0672322404 CH07 10/31/02 2:28 PM Page 215

216 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

The actual implementation of the PerlSetVar and PerlAddVar directives is equivalent to
the set() and add() methods of the Apache::Table class; initializing the CleanOption
array is merely a safeguard against the possibility of inheriting an already populated
array from the configuration of the server or parent container. Of course, if configu-
ration inheritance is what you are after, you can simply use PerlAddVar exclusively.

Historically, PerlSetVar was the first to arrive on the scene, and as such the
dir_config() method adds some syntactic sugar behind the scenes so that
programmers can avoid dealing with the Apache::Table object directly. This, however,
is not an option with PerlAddVar. Although $r->dir_config(‘CleanLevel’) and
$r->dir_config->get(‘CleanLevel’) are equivalent for variables set with PerlSetVar,
PerlAddVar requires the use of Apache::Table’s get() method to access the entire
array of data—using $r->dir_config(‘CleanOption’) will return only the first value in
the array.

As illustrated in Recipe 3.14, that both of these directives are, in fact, manipulatable via
the Apache::Table class lends itself to a whole new realm of possibilities, such as the
ability to set, modify, or delete PerlSetVar settings across the phases of the request.

7.3. Adding Handlers On-the-Fly

You need to insert a small handler as a stopgap and do not want to write a full
module.

Technique

Put the handler right in your httpd.conf using an anonymous subroutine.

Quick! keep external people out of this directory for a while

<Location /public>

PerlAccessHandler ‘sub { \

return Apache::Constants::FORBIDDEN \

unless shift->connection->remote_ip =~ m/^\Q10.3.4./; \

}’

</Location>

Comments

At some point, you might have a need for a specific, short-term solution that does not
warrant a full module for one reason or another. For these instances, utilizing standard

10 0672322404 CH07 10/31/02 2:28 PM Page 216

217CHAPTER 7 Creating Handlers

mod_perl configuration directives with anonymous subroutines is possible, as in the
preceding example.

When mod_perl encounters a Perl*Handler directive, it actually looks for a subroutine
to execute in several different forms. The idiomatic configurations shown thus far have
allowed mod_perl to assume the subroutine handler(), but in fact you can specify any
subroutine name you want.

Idiomatic

PerlHandler My::Dinghy

The same thing

PerlHandler My::Dinghy::handler

Specify a different subroutine

PerlHandler My::Dinghy::oars

Use an object-oriented method handler - see Chapter 10

PerlHandler My::Dinghy->outboard

The sample code merely shows an extension to this model in which you are also able
to use (possibly anonymous) subroutine references as Perl*Handlers. This is actually a
rather common occurrence when programming with handlers, because the API for the
push_handlers() and set_handlers() methods, as discussed in the next chapter,
requires this syntax.

$r->push_handlers(PerlAccessHandler => \&forbidden);

$r->set_handlers(PerlTransHandler => [\&OK]);

If we extend this a bit further we can throw in a few more possibilities. Because the
FORBIDDEN constant is really a constant subroutine exported by the Apache::Constants
class, we can also do something like

<Location /public>

PerlAccessHandler Apache::Constants::FORBIDDEN

</Location>

if we don’t need to program any logic around our access control. Yet another, little-
known solution is to write the handler right in your startup.pl:

sub Quick::Forbidden::handler {

return Apache::Constants::FORBIDDEN

unless shift->connection->remote_ip =~ m/^\Q10.3.4./;

}

10 0672322404 CH07 10/31/02 2:28 PM Page 217

218 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

and then use it as

<Location /forbidden>

PerlAccessHandler Quick::Forbidden

</Location>

At this point the location and meaning of the code are becoming rather obscure, quite
to the chagrin of your co-workers. To spare them significant torment, you might as
well just write a full, if small, handler processed in the usual fashion and stashed
somewhere in @INC.

7.4. Preparing a Module for Release

You want to make certain that the module you are about to release to CPAN is as
clean as possible.

Technique

Be sure that you use strict;, use warnings;, and that your code can survive running
under PerlTaintCheck On.

Comments

Congratulations! You have the foresight to understand that, although CPAN is a
wonderful tool, the packages on it do not always represent squeaky-clean code. You
aim to be different. As a mod_perl programmer, you want to try to do your best to
represent all three communities (Perl, Apache, and mod_perl) in the best possible
light, and therefore present the tightest release you can.

With any Perl module, using the strict and warnings pragmas is good practice and,
as has been pointed out in earlier chapters, this is especially true in the mod_perl
world. The strict pragma will keep you from falling prey to the myriad of scoping
and referencing errors that can crop up, and is now generally accepted as a must for
writing clean code. You will be a better programmer if you always use strict;.

The warnings pragma is there to help you uncover errors that might not be
immediately obvious while coding. These can include extreme problems such as the
notorious Variable $foo will not stay shared warnings that crop up with nested
subroutines, or various other possible sources of errors such as Scalar value @foo[1]
better written as $foo[1] warnings. The nested subroutine problem is far more

10 0672322404 CH07 10/31/02 2:28 PM Page 218

219CHAPTER 7 Creating Handlers

prevalent when programming Apache::Registry scripts than it is with handlers, so if
you get this warning from your handler you are really doing something wrong.

Unlike with the strict pragma, which is essentially under your control, warnings can
be enabled in mod_perl from outside of your code using the PerlWarn configuration
directive. This means that the end user of your CPAN module might have PerlWarn
On in his configuration, which will immediately illuminate your bad programming
practices, such as the popular Use of uninitialized value warning.

The easiest way to fix these “initialized value” warnings is to properly initialize
your variables at the start of your handler.

my $man = “overboard”;

my %fleet = ();

The use of PerlTaintCheck On is, of course, a requirement for any code that uses data
supplied by an end-user, especially in a Web environment. If you do not understand
Perl’s taint mode or why it is important, it is time to read the “Handling Insecure
Data” section of Programming Perl. You will be glad you did. Recipe 15.5 describes an
interesting approach to handling tainted data.

All these features will certainly help you when coding, and naturally you will have
subjected your module to a range of tests, trying to anticipate all reasonable (and
unreasonable) pitfalls. After a point, though, testing further is hard for an author.
When you feel the module is ready, sending a message to the mod_perl mailing list is
not uncommon, and perhaps also to the comp.lang.perl.modules newsgroup, asking
for beta testers. This can be a valuable, relatively informal way to get initial feedback,
and as well as potentially finding some bugs in this way, you could also obtain some
suggestions on the documentation included in your module. See the last recipe in this
chapter for details on how to release your module when it is ready for primetime.

7.5. Creating a Release Tarball

You want to create a tarball of your module to release to CPAN or distribute across
your internal systems.

Technique

Run the h2xs command to create the basic files for your module, and then issue
make dist.

10 0672322404 CH07 10/31/02 2:28 PM Page 219

220 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

$ h2xs -AXn Cookbook::Clean

Writing Cookbook/Clean/Clean.pm

Writing Cookbook/Clean/Makefile.PL

Writing Cookbook/Clean/README

Writing Cookbook/Clean/test.pl

Writing Cookbook/Clean/Changes

Writing Cookbook/Clean/MANIFEST

[time passes, editing is performed, magical things are created]

$ perl Makefile.PL

Checking if your kit is complete...

Looks good

Writing Makefile for Cookbook::Clean

$ make dist

rm -rf Cookbook-Clean-0.01

/usr/bin/perl -I/usr/local/lib/perl5/5.6.1/i686-linux-thread-multi -
I/usr/local/lib/perl5/5.6.1 -MExtUtils::Manifest=manicopy,maniread \

-e “manicopy(maniread(),’Cookbook-Clean-0.01’, ‘best’);”

mkdir Cookbook-Clean-0.01

tar cvf Cookbook-Clean-0.01.tar Cookbook-Clean-0.01

Cookbook-Clean-0.01/

Cookbook-Clean-0.01/README

Cookbook-Clean-0.01/Makefile.PL

Cookbook-Clean-0.01/Changes

Cookbook-Clean-0.01/MANIFEST

Cookbook-Clean-0.01/test.pl

Cookbook-Clean-0.01/Clean.pm

rm -rf Cookbook-Clean-0.01

gzip --best Cookbook -Clean-0.01.tar

Comments

Perl provides a number of tools to package, compile, and test a module. By adapting
your module to the standard Perl conventions you get a great many features for little
or no work, including the ability to make tarballs and install your module quickly and
easily in the standard Perl system library. The Perl utility h2xs quickly builds the
framework of files and commands needed to build your module. These files include

• Changes. Text file with changes between versions

• Clean.pm. Our actual code

10 0672322404 CH07 10/31/02 2:28 PM Page 220

221CHAPTER 7 Creating Handlers

• Makefile.PL. Build and install directives for creating the Makefile.

• MANIFEST. Complete list of files in this package.

• README. Useful documentation for how to install and/or use the module.

• test.pl. A simple test harness.

Originally h2xs was used to create extension modules associated with C header files
(thus the name, header files end with .h and Perl extension code ends with .xs). These
days you can use h2xs for any type of module, just as long as you pass the correct
parameters. We use the -AX arguments, which turn off parsing of C structures and
disable AUTOLOAD support, resulting in a basic Perl module framework.

After running the h2xs command, we need to add our code to the appropriate files. In
this case we modify the Clean.pm file by copying our old code and modifying the
boilerplate text in the supplied file. You might want to take a moment and complete
the POD documentation for your module at this time (as well as placing something
useful in the README) because we know you didn’t do that before.

Finally, when you finish editing, you can create the Makefile. It’s as simple as running
the command perl Makefile.PL. After this you can enter make to build the module, or
make dist to build the tarball, like Cookbook-Clean-0.01.tar.gz.

The function WriteMakefile(), used by Makefile.PL to create the all-important
Makefile from which everything else flows, has a number of useful attributes that you
can use to customize your build. In addition to the ones described in this chapter and
elsewhere, some of the more common ones are

• CCFLAGS. String indicating the C flags to be used.

• DEFINE. String indicating the defines to be used.

• DIR. An array reference of directories that include further Makefile.PL files to
process.

• EXE_FILES. A reference to an array containing a list of executable files to install.

• INC. String indicating the directories to search for included files.

• LIBS. An anonymous array containing alternative library specifications (typically
library directories and names)

• PREREQ_PM. A hash reference containing a list of prerequisite modules and
versions

10 0672322404 CH07 10/31/02 2:28 PM Page 221

222 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

As well, if you have more than one module in the distribution, you can place them
under a directory called lib/, and Makefile will install them in the Perl tree,
maintaining the same directory structure.

7.6. Creating a Binary PPM Distribution

You want to create a binary PPM distribution of your package.

Technique

Follow the steps in the previous recipe for creating a distribution, and then follow this
procedure

C:\Cookbook\Clean> perl Makefile.PL BINARY_LOCATION=”http://ppm.example.com/

➥ppmpackages/x86/Cookbook-Clean.tar.gz”

Checking if your kit is complete...

Looks good

Writing Makefile for Cookbook::Clean

C:\Cookbook\Clean> nmake

cp Clean.pm blib\lib\Cookbook\Clean.pm

AutoSplitting blib\lib\Cookbook\Clean.pm (blib\lib\auto\Cookbook\Clean)

C:\Cookbook\Clean> nmake ppd

C:\Cookbook\Clean> tar cvf Cookbook-Clean.tar blib

blib/

blib/lib/

blib/lib/Cookbook/

blib/lib/Cookbook/.exists

blib/lib/Cookbook/Clean.pm

blib/lib/auto/

blib/lib/auto/Cookbook/

blib/lib/auto/Cookbook/Clean/

blib/lib/auto/Cookbook/Clean/.exists

blib/lib/auto/Cookbook/Clean/autosplit.ix

blib/arch/

blib/arch/auto/

blib/arch/auto/Cookbook/

10 0672322404 CH07 10/31/02 2:28 PM Page 222

223CHAPTER 7 Creating Handlers

blib/arch/auto/Cookbook/Clean/

blib/arch/auto/Cookbook/Clean/.exists

blib/man3/

blib/man3/.exists

C:\Cookbook\Clean> gzip --best Cookbook-Clean.tar

C:\Cookbook\Clean> copy Cookbook-Clean.ppd \PPMPackages

C:\Cookbook\Clean\Cookbook-Clean.ppd => \PPMPackages\Cookbook-Clean.ppd

1 file copied

C:\Cookbook\Clean> copy Cookbook-Clean.tar.gz \PPMPackages\x86

C:\Cookbook\Clean\Cookbook-Clean.tar.gz => \PPMPackages\x86\Cookbook-
Clean.tar.gz

1 file copied

Comments

Although normally associated with Win32, ActiveState’s PPM (Perl Package Manager)
for creating and installing prebuilt packages can be used in principle for any system.
Indeed, ActiveState maintains PPM packages for Linux and Solaris as well as Win32;
substituting the appropriate make and cp commands in the preceding dialogue will
result in a distribution package for these platforms.

Creating such a distribution follows the preceding procedure for building a ppd file.
This is an XML file containing information on the package:

<SOFTPKG NAME=”Cookbook-Clean” VERSION=”0,1,0,0”>

<TITLE>Cookbook-Clean</TITLE>

<ABSTRACT>Produce clean HTML</ABSTRACT>

<AUTHOR>The folks at <authors@modperlcookbook.org></AUTHOR>

<IMPLEMENTATION>

<DEPENDENCY NAME=”mod_perl” VERSION=”1,26,0,0” />

<OS NAME=”MSWin32” />

<ARCHITECTURE NAME=”MSWin32-x86-multi-thread” />

<CODEBASE HREF=”http://ppm.example.com/ppmpackages/x86/

➥Cookbook-Clean.tar.gz” />

</IMPLEMENTATION>

</SOFTPKG>

The value of the HREF attribute of the CODEBASE field comes from the BINARY_LOCATION
argument to perl Makefile.PL. The ABSTRACT and AUTHOR fields come from specifying
them in Makefile.PL as, for example,

10 0672322404 CH07 10/31/02 2:28 PM Page 223

224 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

WriteMakefile(

NAME => ‘Cookbook::Clean’,

VERSION_FROM => ‘Clean.pm’,

PREREQ_PM => {mod_perl => 1.26,

HTML::Clean => 0.8, },

ABSTRACT => ‘Produce Clean HTML’,

AUTHOR => ‘The folks at <authors@modperlcookbook.org>’,

);

As well, if your module depends on any other modules, and if you specify the needed
modules in a PREREQ_PM attribute in Makefile.PL as in the preceding example, these
needed modules will appear in a DEPENDENCY field in the ppd file. When installing the
module by using the ppm utility, any needed modules not present on the user’s system
will automatically be installed as well.

When this is all done, one then places the ppd file on a public server, with the .tar.gz
file conventionally beneath the ppd/ location in a directory characterizing the target
system. For users to install this distribution, they must first get and install the PPM
module from CPAN. Installation of a PPM distribution is then a simple matter of
using the ppm utility as follows:

C:\> ppm install “http://ppm.example.com/ppmpackages/package_name.ppd”

The PPM distribution from CPAN also ontains the modules needed to implement a ppm
server on your system, so that users can set the repository within the ppm interactive
shell utility to your server, from which searches, as well as installations, can be
performed.

Despite the convenience of these prebuilt binary packages, there are a few drawbacks
as well, especially for modules that require a C compiler (as with those with XS
extensions). For these modules, one should, if at all possible, not rely on binary distri-
butions and instead build the extension on your own, as sometimes even minor
differences between the system upon which the build is done and the end-user system
can result in incompatibilities.

This last point is particularly relevant in the Win32 world, where many users, for lack
of experience and/or resources, do not have access to a C compiler, and instead rely
almost exclusively on binary distributions. Most of the popular software binaries
available, such as ActiveState’s Perl and Apache, are compiled with Microsoft’s Visual
C++. This compiler unfortunately is relatively expensive, and so a user might be
tempted to use one of the free compilers available in the Win32 world, such as that of

10 0672322404 CH07 10/31/02 2:28 PM Page 224

225CHAPTER 7 Creating Handlers

Borland (http://www.borland.com/), Cygwin (http://www.cygwin.com/), or mingw32
(http://agnes.dida.physik.uni-essen.de/~janjaap/mingw32/), to compile a module
extension. Just like in the Unix world, however, mixing code compiled by different
compilers generally doesn’t work, even on the same machine. Thus, as well as ensuring
that the build and end-user platforms are compatible, one should also make certain
that any external libraries, and so on, used by an application have been compiled
with the same compiler.

7.7. Writing a Live Server Test Suite

You want to write a test for your module that runs against a live Apache server.

Technique

Use the Apache::Test module, available from the httpd-test distribution, or from the
mod_perl 2.0 distribution.

$ cvs -d”:pserver:anoncvs@cvs.apache.org:/home/cvspublic” checkout httpd-test

cvs server: Updating httpd-test

U httpd-test/CHANGES

U httpd-test/LICENSE

U httpd-test/README

...

U httpd-test/perl-framework/t/ssl/varlookup.t

U httpd-test/perl-framework/t/ssl/verify.t

$ cd httpd-test/perl-framework/Apache-Test

$ perl Makefile.PL

generating script...t/TEST

Checking if your kit is complete...

Looks good

Writing Makefile for Apache::Test

$ make

$ make test

$ su

Password:

make install

10 0672322404 CH07 10/31/02 2:28 PM Page 225

226 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

Comments

Writing a series of tests that execute against a live Apache server has gotten much
simpler since the advent of Apache::Test. Originally part of the mod_perl 2.0
development project, the Apache::Test module became the basis of the
perl-framework portion of the httpd-test distribution. The Apache HTTP test
project, from which the perl-framework has stemmed, has amassed a rather
astounding amount of development resources. It is full of hundreds of tests for the
various Apache extension modules, as well as other useful tools for testing and
stressing Apache. The Apache::Test part of the distribution is generic enough to be
used with virtually any version of Apache, with or without mod_perl enabled. Here,
however, we discuss the use of features specific to a mod_perl-enabled server.

Keep in mind that Apache::Test is a relatively new project, subject to rapid changes in
both features and behavior—the examples here worked at the time of this writing, but
changes in the API may mean slight modifications are required on your part for things
to run smoothly.

To prepare your own module distribution for the use of Apache::Test, you first have
to edit the Makefile.PL somewhat. Just add the following subroutine anywhere in
Makefile.PL, which will override the default make test routine written by
ExtUtils::MakeMaker with the Apache::Test harness. If the end-user platform does
not have Apache::Test installed, make test simply exits with an informative message.

sub MY::test {

if (eval “require Apache::TestMM”) {

Apache::TestMM::generate_script(‘t/TEST’);

Apache::TestMM->import(qw(test clean));

return Apache::TestMM->test;

}

The whitespace in front of @echo MUST be a single tab!

return <<’EOF’;

test::

@echo This test suite requires Apache::Test

@echo available from the mod_perl 2.0 sources

@echo or the httpd-test distribution.

EOF

}

Next, you have to create a t/ subdirectory off of the main directory containing your
source code. Very recent versions of h2xs create this for you (and place a file named
1.t in it), but older versions simply create test.pl in the main directory of your
source tree. In either case you will want to remove the standard file (1.t or test.pl)
before proceeding.

10 0672322404 CH07 10/31/02 2:28 PM Page 226

227CHAPTER 7 Creating Handlers

The t/ directory will eventually contain a number of files and directories, some of
which you must create yourself and some of which Apache::Test will create for you.
The first file that should go into t/ is called TEST.PL, which looks like

Listing 7.1 t/TEST.PL

#!perl

use strict;

use warnings FATAL => ‘all’;

use Apache::TestRunPerl();

Apache::TestRunPerl->new->run(@ARGV);

This is the actual test harness that will be invoked when you issue make test. Believe
it or not, these few lines do all the intricate work of starting, stopping, configuring,
and running your tests. The only real thing you need to worry about at this point is
letting Apache::Test know the location of your httpd binary, which is typically done
by setting the APACHE environment variable appropriately.

$ export APACHE=/usr/local/apache/bin/httpd

If Apache::Test cannot find a suitable Apache server, it politely lets you know at the
start of your tests, so you need not fear the end users of your module are without
direction in this regard.

The next step is to define the tests. What type of tests should you write? That depends
on how complex your module is, what functions it should perform, what else is
installed on the end-user’s platform, and so on. For our example, we’ll create a few
generic tests that illustrate the main features of Apache::Test, which you can leverage
into something appropriate for your module.

Just about all test suites ought to have a bare-bones test that makes sure their module
can be loaded. Additionally, checking for any software version dependencies you might
require is important, although the PREREQ_PM argument to WriteMakefile() can usually
enforce this. Here is a minimal test that makes sure our versions of Perl and mod_perl
are current, and makes certain that our fictional module, Cookbook::TestMe is loadable.

Listing 7.2 t/01basic.t

use strict;

use warnings FATAL => ‘all’;

use Apache::Test;

10 0672322404 CH07 10/31/02 2:28 PM Page 227

228 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

plan tests => 4;

ok require 5.006001;

ok require mod_perl;

ok $mod_perl::VERSION >= 1.26;

ok require Cookbook::TestMe

01basic.t illustrates a few of the things that will be common to all of our tests. First,
we do some bookkeeping and plan the number of tests that will be attempted. After
that, we simply call ok() followed by our test condition. The syntax of the tests might
seem rather odd, but they follow the same pattern as Test.pm from the base Perl distri-
bution—Apache::Test actually uses Test.pm behind the scenes. For the full details of
the ok() function and its semantics, see the Test manpage.

Now it’s time to prepare our server for some live tests. Apache::Test provides a basic
httpd.conf configuration, including DocumentRoot, ErrorLog, Port, and other such
settings, allowing you to focus on configuring only the settings specific to your needs.
To add additional settings to the defaults, we create a t/conf/extra.conf.in file. If
Apache::Test sees extra.conf.in it will pull the file into its default configuration
using an Include directive.

Listing 7.3 t/conf/extra.conf.in

<Location /hooks>

SetHandler perl-script

PerlHandler ‘sub { use mod_perl qw(PerlStackedHandlers PerlFileApi); \

shift->send_http_header(); \

return Apache::Constants::OK; \

}’

</Location>

Alias /handler @DocumentRoot@

<Location /handler>

SetHandler perl-script

PerlHandler Cookbook::TestMe

</Location>

Alias /filter @DocumentRoot@

<Location /filter>

SetHandler perl-script

PerlHandler Cookbook::TestMe Cookbook::TestMe

PerlSetVar Filter On

</Location>

Listing 7.2 (continued)

10 0672322404 CH07 10/31/02 2:28 PM Page 228

229CHAPTER 7 Creating Handlers

As you can see, we are planning on running several live tests with our module. The
first configuration is a handler implemented as an anonymous subroutine that merely
tests whether mod_perl was compiled with PERL_STACKED_HANDLERS=1 and
PERL_FILE_API=1 (or EVERYTHING=1), since our fictitious Cookbook::TestMe module
makes copious use of these hooks. The anonymous subroutine shortcut here is rather
convenient and keeps us from needing to create a separate file just to test these
conditions.

The next configuration is for a direct call to our handler. Notice the @DocumentRoot@
variable in our configuration, which gets expanded to the full path to our (yet to be
created) t/htdocs/ directory as part of the Apache::Test magic. The final configu-
ration is for testing whether the platform is capable of handling stacked handlers using
Apache::Filter.

Because we are using DocumentRoot in our tests, let’s put some content in there. Create
the file directory t/htdocs/ and place an index.html file in it. It does not have to
contain anything fancy—in fact, the shorter the better, because you will be using the
contents of this file as a comparison later on. For our example, we insert the simple
phrase “Thanks for using Cookbook::TestMe”.

As with httpd.conf, Apache::Test also provides a rudimentary startup.pl file.
However, you can augment the basics provided by Apache::Test with your own by
creating t/conf/modperl_extra.pl. For our immediate purposes, this file is rather
small

Listing 7.4 t/conf/modperl_extra.pl

eval “require Apache::Filter”;

1;

We use modperl_extra.pl as a way to conditionally load Apache::Filter without
using the PerlModule directive in our extra_conf.in. As you will see shortly, we can
optionally run tests based on various criteria—using an eval() here allows us to satisfy
our test conditions for users both with and without Apache::Filter installed.

At this point in the process, your t/ directory should have the following layout:

$ ls t/*

t/01basic.t t/TEST.PL

t/conf:

extra.conf.in modperl_extra.pl

t/htdocs:

index.html

10 0672322404 CH07 10/31/02 2:28 PM Page 229

230 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

Now it is time to create some tests that use the layout we just constructed. The format
for 01basic.t was pretty simple, and relatively close to what you would do for a
standard test that did not involve a running Apache server. For the remainder of the
tests, we will take advantage of the functions provided by Apache::Test and its
companion modules.

Listing 7.5 t/02hooks.t

use strict;

use warnings FATAL => ‘all’;

use Apache::Test;

use Apache::TestRequest;

plan tests => 1, \&have_lwp;

ok GET_OK ‘/hooks’;

The test file 02hooks.t is a little different from the file we created for our basic tests.
Here, we added Apache::TestRequest to our list of required modules.
Apache::TestRequest provides a number of tools we will need to make requests to our
live server. As before, we plan the number of tests that will be attempted. The
difference here is that we are choosing to plan the tests only if some additional criteria
are met. plan() accepts a code reference as a final, optional argument—if the code
reference evaluates to true, the tests are planned. Here we use the have_lwp() function
provided by Apache::TestRequest, which checks the availability of modules from the
libwww-perl distribution. If have_lwp() returns true, we know we can take advantage
of the shortcuts Apache::Test provides instead of implementing our own scheme to
initiate requests to the server and parse the response.

After planning our test, we use the shortcut function GET_OK() provided by
Apache::TestRequest to fetch and process our URL. Actually, Apache::TestRequest
provides a number of different functions for fetching and testing URLs on your test
server, some of which are shown in Table 7.1.

Table 7.1 Some URL-fetching Methods

Test Function Details

GET_BODY() Returns the message body of the response.

GET_OK() Returns true on success (HTTP_OK) and false otherwise.

GET_RC() Returns the HTTP status code of the response.

GET_STR() Returns the request headers and response message body.

10 0672322404 CH07 10/31/02 2:28 PM Page 230

231CHAPTER 7 Creating Handlers

Any of these functions can be used to test the results of your request; it’s just a matter
of what you want to accomplish and personal preference. For 02hooks.t we simply
want to make sure that the anonymous subroutine handler at the URL /hooks returns
successfully.

The next test is the one that actually tests our handler. Here, we want to actually fetch
a file and compare it to the value we know to be there (hence the terse value for
index.html). For this we use the GET_BODY() method from Table 7.1, along with a
conditional form of the ok() test function.

Listing 7.6 t/03handler.t

use strict;

use warnings FATAL => ‘all’;

use Apache::Test;

use Apache::TestRequest;

plan tests => 1, \&have_lwp;

my $content = GET_BODY ‘/handler/index.html’;

chomp $content;

ok ($content eq “Thanks for using Cookbook::TestMe”);

Finally, in the following 04filter.t code we use a combination of all the elements
presented so far.

Listing 7.7 t/04filter.t

use strict;

use warnings FATAL => ‘all’;

use Apache::Test;

use Apache::TestRequest;

plan tests => 1, \&have_filter;

my $content = GET_BODY ‘/filter/index.html’;

chomp $content;

ok ($content eq “Thanks for using Cookbook::TestMe”);

sub have_filter {

eval {

die unless have_lwp();

10 0672322404 CH07 10/31/02 2:28 PM Page 231

232 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

require Apache::Filter;

};

return $@ ? 0 : 1;

}

We start here by checking the current environment against our own criteria: The
platform must support both LWP and Apache::Filter for the test to be attempted,
which we determine using our own have_filter() function. Then, similar to
03handler.t, we use GET_BODY() to retrieve the content from the /filter location in
our extra.conf.in, where we chained together two instances of our handler. Assuming
that the operations in Cookbook::TestMe are basic enough, if Apache::Filter is
present and working properly, the results should be the same regardless of the number
of stacked PerlHandlers. The version of Cookbook::Clean presented in Recipe 15.4,
which is Apache::Filter aware, falls into this category. For more elaborate filtering
setups, such a generic test may not be possible, but at least you can get a feel for the
steps necessary from the example here.

After preparing our tests, a simple call to make test should yield a dialogue similar to
this:

$ make test

/usr/local/bin/perl -Iblib/arch -Iblib/lib \

t/TEST -clean

setting ulimit to allow core files

ulimit -c unlimited

exec t/TEST -clean

cannot build c-modules without apxs

APACHE_USER= APXS= APACHE_PORT= APACHE_GROUP= APACHE=/usr/local/apache/bin/httpd
\

/usr/local/bin/perl -Iblib/arch -Iblib/lib \

t/TEST

...

waiting for server to warm up...ok

server localhost:8529 started

01basic.............ok

02hooks.............ok

03handler...........ok

04filter............ok

All tests successful.

Files=4, Tests=7, 4 wallclock secs (3.65 cusr + 0.23 csys = 3.88 CPU)

server localhost:8529 shutdown

Listing 7.7 (continued)

10 0672322404 CH07 10/31/02 2:28 PM Page 232

233CHAPTER 7 Creating Handlers

If Apache::Filter had not been present on the end-user system, have_filter() would
have returned false and the result of make test would have looked like:

01basic.............ok

02hooks.............ok

03handler...........ok

04filter............skipped: no reason given

All tests successful, 1 test skipped.

You can configure many other types of tests with the Apache::Test suite; we have only
scratched the surface of what is available, and more options are frequently written in.
For the latest developments, take a look at the documentation that accompanies the
httpd-test distribution.

7.8. Adding Custom Configuration Directives

PerlSetVar and PerlAddVar are a bit too restrictive for your configuration needs, and
you are looking for something more flexible.

Technique

Write a directive handler using Apache::ModuleConfig, Apache::ExtUtils, h2xs, and
some moxie.

In httpd.conf (after many things highly magical)

PerlModule Cookbook::Clean

<Location /clean>

SetHandler perl-script

PerlHandler Cookbook::Clean

Now, our very own Apache directives.

CleanLevel 3

CleanOption whitespace shortertags

</Location>

Comments

The ability to add custom configuration directives to Apache is an extremely powerful
yet seldom used or understood aspect of mod_perl. In reality, the process is not all that

10 0672322404 CH07 10/31/02 2:28 PM Page 233

234 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

difficult mechanically, but the more sophisticated understanding of the inner workings
of Apache, Makefile.PL editing, and patience required is somewhat intimidating. On
the other hand, the results are quite powerful; implementing directive handlers will
give you fine-grained control over your configurations, including the ability to enforce
the number, types, and values of the arguments your module receives, as well as
overriding core Apache directives with your own, devious substitutes.

The actual number of configuration directives directly handled by the core Apache
server is relatively small; of the 210 directives currently provided by the standard
Apache distribution, only 76 are from http_core.c. Directives such as SetHandler and
Alias are implemented as additions to the core server via C extension modules, such
as mod_mime and mod_alias. Apache provides an API for C modules that allows them
to add directives Apache will recognize when it parses httpd.conf. For C modules
everything is quite routine and there is nothing particularly special about the API. For
mod_perl programmers, the interface to the Apache directive handler API requires an
unusual amount of effort, so some background explanations are due that will add
clarity to the process and try to make it a little less intimidating.

If we start by outlining the process Apache uses when it handles configuration
directives in general the mod_perl interface into the process will go much more
smoothly. As Apache tokenizes httpd.conf and encounters various directives, Apache
gives each module loaded into the server a chance to process the directive before it
tries to handle the directive itself. If neither an extension module nor http_core
chooses to handle the directive, Apache sends out a warning and the server fails to
start:

Invalid command ‘CleanLevel’, perhaps misspelled or defined by a module not
included in the server configuration

/usr/local/apache/bin/apachectl start: httpd could not be started

The way a C extension module (such as mod_perl) tells Apache which directives it is
responsible for is by populating an Apache module record. Although there is more to
the module record than just directive handlers, we are omitting some explanation in
favor of focus for the moment.

Apache, in turn, stores the module records from all active modules internally. As
Apache tokenizes httpd.conf, it traverses this module list, looking for candidates to
handle each directive. After a module steps up and accepts responsibility for the
directive, it gives Apache a set of rules that govern the directive, such as where it is
allowed to appear within httpd.conf and what the format of the arguments should be.
Apache then applies this set of rules to the directive, and if all looks to be in proper
order, Apache passes the configuration data over to the module for processing.

10 0672322404 CH07 10/31/02 2:28 PM Page 234

235CHAPTER 7 Creating Handlers

After a module has the configuration data the rest is out of core Apache’s hands. The
module typically makes decisions about the validity of the arguments then stashes the
data away so that it can be used again at request time.

For Perl modules that want to implement their own configuration directives the
process is pretty much the same. First, we have to let Apache know about our directive
and supply the ruleset that defines its behavior. Then we need to accept and process
the configuration data. When these two steps are accomplished, we store the data
away and retrieve it again at request time.

As it turns out, the first stage is by far the most difficult and least intuitive part of the
process. To let Apache know that our directive exists we have to populate an Apache
module record. Like the other Apache records we have encountered thus far, the
Apache module record is defined in http_config.h in the Apache source distribution
and is accessible through a mod_perl API. However, the module record is unique in
that it wholly defines the interaction between a C extension module and Apache—it
holds all the information about the module that Apache will ever know. Because of
this, the Apache module record needs to be fully populated and available to Apache
when the server is starting, before any requests are served. This requires a bit of
chicanery on our part: We have to essentially turn our Perl module into something
resembling a C extension module so that our Perl module can be loaded into Apache
when the server is started. The solution is to use XS to provide the glue between our
Perl world and Apache’s C world during the early stages of the Apache lifecycle.

Because we have to use XS for this initial (and most difficult) part of the directive
handler API, much of the process occurs outside of the request cycle using a
combination of standard Perl tools and a mod_perl-specific interface. In illustration,
let’s take the Cookbook::Clean handler from Recipe 7.2 and alter it to make use of its
own custom directives instead of PerlSetVar and friends.

Unlike with other mod_perl handlers, to create directive handlers you will need to use
make and write a Makefile.PL. The best way to begin, then, is via h2xs using the same
-AX argument list we used in Recipe 7.5. Although the process will eventually result in
the creation of an .xs file, the mod_perl API does this on-the-fly so you don’t need to
concern yourself with it.

After running h2xs, the next thing to do is edit the Makefile.PL.

Lisiting 7.8 Makefile.PL for Cookbook::Clean

package Cookbook::Clean;

use ExtUtils::MakeMaker;

use Apache::ExtUtils qw(command_table);

use Apache::src ();

10 0672322404 CH07 10/31/02 2:28 PM Page 235

236 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

use Config;

use strict;

my @directives = (
{ name => ‘CleanLevel’,
errmsg => ‘Level of suds’,
args_how => ‘TAKE1’,
req_override => ‘OR_ALL’, },

{ name => ‘CleanOption’,
errmsg => ‘Specific detergent to use when cleaning’,
args_how => ‘ITERATE’,
req_override => ‘OR_ALL’, },

);

command_table(\@directives);

my %config;

$config{INC} = Apache::src->new->inc;

if ($^O =~ m/Win32/) {
require Apache::MyConfig;

$config{DEFINE} = ‘ -D_WINSOCK2API_ -D_MSWSOCK_ ‘;
$config{DEFINE} .= ‘ -D_INC_SIGNAL -D_INC_MALLOC ‘
if $Config{usemultiplicity};

$config{LIBS} =
qq{ -L”$Apache::MyConfig::Setup{APACHE_LIB}” -lApacheCore } .
qq{ -L”$Apache::MyConfig::Setup{MODPERL_LIB}” -lmod_perl};

}

WriteMakefile(
NAME => ‘Cookbook::Clean’,
VERSION_FROM => ‘Clean.pm’,
PREREQ_PM => { mod_perl => 1.26,

HTML::Clean => 0.8, },
ABSTRACT => ‘An XS-based Apache module’,
AUTHOR => ‘authors@modperlcookbook.org’,
clean => { FILES => ‘*.xs*’ },
%config,

);

Lisiting 7.8 (continued)

10 0672322404 CH07 10/31/02 2:28 PM Page 236

237CHAPTER 7 Creating Handlers

For the most part, this looks the same as the Makefile.PL structure introduced in
Recipe 3.19. There are, however, a few differences that are important and essential to
using the custom directive API.

The first change to note is that the standard shebang line has been replaced with the
package keyword. This needs to match the name of the package that defines your
directive handler, Cookbook::Clean in our case. Additionally, we have imported the
command_table() function from the Apache::ExtUtils class. More on the need for
both of these changes shortly.

The WriteMakefile() function from ExtUtils::MakeMaker has been augmented to
include the PREREQ_PM and clean elements. clean and PREREQ_PM are not required keys
but are included for good measure to make sure we have a recent version of mod_perl
and that we remove the Clean.xs file generated later. We also need an INC key so
make can find all of the Apache and mod_perl header files that it will need. We
actually sneak the INC key into the %config hash, along with some Win32 specific data
that helps make the Makefile.PL platform independent, using the inc() utility
function from the Apache::src class.

The rest of the code at the top of the Makefile.PL is the magic that ties your custom
directive into the Apache module record, and requires a rather lengthy explanation.

Let’s take a moment here to examine the high-level Apache process again. When
Apache parses httpd.conf it decides whether a directive can appear within a
<Directory> container or an .htaccess file, as well as whether the directive takes a
single argument or a list of values. As we already mentioned, all our module needs to
do is supply the set of rules that define these aspects of the custom directive and
Apache takes care of the rest, which is very convenient and removes a large burden
from module developers.

The rules that govern our directive are held in an additional record: the Apache
command record, also defined in httpd_config.h, which occupies a slot of the Apache
module record. The command record specifies the behavior of the directive, such as
the number of arguments it expects, where it can appear within httpd.conf, and which
callback routine is passed the argument list when the directive is encountered.

The command_table() function is the real workhorse of the entire process. It creates
the Apache module and command records by generating lots of XS glue required to tie
our module to Apache. The @directives array we pass (by reference) to
command_table() is an array of hash references, each hash representing a separate
custom directive, and each hash key representing a field in the Apache command
record. Table 7.2 lists the keys and a brief description of their meaning.

10 0672322404 CH07 10/31/02 2:28 PM Page 237

238 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

Table 7.2 command_table() Parameters

Apache Command Record Field Short Description

args_how The directive prototype

cmd_data Additional configuration data

errmsg Description of the directive

func Name of routine that handles the directive

name Name of the directive as it will appear in the
configuration

req_override Options that specify where in the configuration the
directive might be located

The name field is the name of the directive to be implemented, such as our CleanLevel.
To avoid future namespace clashes, prepending your module name to the front of the
directive is a good convention to stick to. As will be discussed in Recipe 7.11, the
ability to choose the name of an existing Apache directive to override its behavior is
possible.

errmsg is a description of the directive. This can be anything you like, but it will be
the message displayed when Apache encounters an error processing the directive, such
as a prototype mismatch. It is also displayed by mod_info on the /server-info page.

By default, the Perl subroutine that is passed the configuration data is the same as the
name you give your directive. However, you may also specify a different name for the
directive handler using the func key. This is useful for providing backward compati-
bility and support for older directive names when your module is hauled out for its
annual rewrite; there is no reason why two directives cannot point to the same
subroutine.

The cmd_data field is actually seldom used, but can contain additional data that you
want available when the directive is configured. For example, mod_access actually uses
the same handler to process the Allow and Deny configuration directives, letting the
cmd_data field serve as the distinguishing marker. Creative uses for this field are shown
in Recipe 12.6.

Now for the tricky stuff. The args_how key defines the prototype for the directive.
This affects not only the number of arguments received by your Perl subroutine, but
also the number of times your routine is called when the directive is encountered. The
possible values for this field are defined in http_config.h in the cmd_how enumeration.
In our example we specify both TAKE1 and ITERATE. TAKE1 specifies that the directive
takes one argument, which means your directive handler will be called once for each

10 0672322404 CH07 10/31/02 2:28 PM Page 238

239CHAPTER 7 Creating Handlers

time the directive is encountered. The ITERATE prototype signifies that, for each time
the directive is encountered, the directive handler subroutine is to be called once for
each argument until the argument list is exhausted. Thus, the number of callbacks to
your subroutine can vary greatly depending on the ruleset you specify with
command_table(). There are also other possible prototypes, such as those that enforce
two parameters or others that accept only “On” or “Off”. For a more complete
explanation of the various prototypes, as well as sample usages, see Appendix B.

Although the args_how values correspond to constants exported by the
Apache::Constants :args_how import tag, note that at this point they are merely
strings, not constant subroutines, so actually use()ing Apache::Constants is not
required. Apache::ExtUtils, as part of its wand waving, takes care of translating these
strings into numerical constants that mod_perl understands.

The final key, req_override, signifies where in the Apache configuration the directive
can reside. A directive may appear in four different logical areas of the configuration:
the base server, a virtual host, a container directive, or an .htaccess file. Additionally,
a directive’s presence within an .htaccess file is restricted based on the values set by
the AllowOverride core directive. All these permutations are captured in the
req_override bitmask. Permissible values for this field are (you guessed it) defined in
http_config.h and may be logically ORed together to determine the appropriate level
of containment.

In our Makefile.PL, both directives are capable of being placed anywhere within any
configuration file the administrator pleases due to the OR_ALL override setting. If we
had wanted our directives to be allowed only on a per-server basis (outside of any
container directive, such as <Location>), we could have used the RSRC_CONF
designation instead.

As with args_how, these options all correspond to constants available from
Apache::Constants, can be imported using the :override tag, and are fully listed in
Appendix B.

We mentioned that the req_override values can be logically combined to form an
access bitmask. In reality, however, the only combination you will ever likely
encounter is RSRC_CONF|ACCESS_CONF, which means the directive is allowed any place
other than in an .htaccess file. In fact, there is no other combination of overrides in
use by any module in the standard Apache distribution, and most other combinations
tend to be misleading or redundant. Keep in mind that, however hard you might try,
there is no way to distinguish the different container directives using override flags; if
a directive is allowed in a <Location>, it is allowed within <Files>, <DirectoryMatch>,
and all the others as well.

10 0672322404 CH07 10/31/02 2:28 PM Page 239

240 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

After you have determined where your directive can live and what types of arguments
you require, you can simply call Apache::ExtUtils’s command_table() function, issue
perl Makefile.PL, and voila! mod_perl has magically created everything Apache needs
to know about your new directives. If you are interested, take a look at the generated
Clean.xs and compare it to a simple module in the Apache distribution, such as
mod_dir.c; it is almost like you wrote the extension in C! Almost.

Although most of the hard work is complete at this point, much still remains. We still
have to process the incoming data, store it away, and retrieve it again at request time.
The good news is that each of these functions is handled back in familiar Perl
territory, within our module.

Listing 7.9 Clean.pm

package Cookbook::Clean;

use Apache::Constants qw(OK DECLINED);

use Apache::File;

use Apache::Log;

use Apache::ModuleConfig;

use DynaLoader ();

use HTML::Clean;

use 5.006;

our $VERSION = ‘0.01’;

our @ISA = qw(DynaLoader);

__PACKAGE__->bootstrap($VERSION);

use strict;

sub handler {

my $r = shift;

my $log = $r->server->log;

my $cfg = Apache::ModuleConfig->get($r, __PACKAGE__);

unless ($r->content_type eq ‘text/html’) {

$log->info(“Request is not for an html document - skipping...”);

return DECLINED;

}

10 0672322404 CH07 10/31/02 2:28 PM Page 240

241CHAPTER 7 Creating Handlers

my $fh = Apache::File->new($r->filename);

unless ($fh) {

$log->warn(“Cannot open request - skipping... $!”);

return DECLINED;

}

Slurp the file (hopefully it’s not too big).

my $dirty = do {local $/; <$fh>};

Create the new HTML::Clean object.

my $h = HTML::Clean->new(\$dirty);

Set the level of suds.

$h->level($cfg->{_level} || 1);

Make sure that we have a hash reference to dereference.

my %options = $cfg->{_options} ? %{$cfg->{_options}} : ();

Clean the HTML.

$h->strip(\%options);

Send the crisp, clean data.

$r->send_http_header(‘text/html’);

print ${$h->data};

return OK;

}

sub CleanLevel ($$$) {

my ($cfg, $parms, $arg) = @_;

die “Invalid CleanLevel $arg!” unless $arg =~ m/^[1-9]$/;

$cfg->{_level} = $arg;

}

sub CleanOption ($$@) {

my ($cfg, $parms, $arg) = @_;

Listing 7.9 (continued)

10 0672322404 CH07 10/31/02 2:28 PM Page 241

242 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

my %possible = map {$_ => 1} qw(whitespace shortertags blink contenttype

comments entities dequote defcolor

javascript htmldefaults lowercasetags);

if ($possible{lc $arg}) {

$cfg->{_options}{lc $arg} = 1;

}

else {

die “Invalid CleanOption $arg!”;

}

}

1;

With the exception of some additional code sandwiching the code from Recipe 7.1,
things look pretty much the same. We have added the global variables $VERSION and
@ISA and used them with the call to DynaLoader’s bootstrap() method. This is what
ties your Perl XS extension module to Apache. When you issue make, a shared object
file is created using the .xs file generated by command_table(). At runtime, the
bootstrap() method takes care of loading this shared object into the current
environment. If you don’t fully understand the mechanism here, that’s okay—it’s a
realm best left to the conjurers and prestidigitators of the Perl internals world.

At the end of our module rests our actual directive handlers, with names matching
those we entered into the Apache command record using command_table(). These
contain the code that will give meaning to the directive and make it possible for our
handler() subroutine to access the configuration data at request time.

Again, let’s take a high-level approach before continuing. Configuration directives are
generally followed by a series of arguments. For instance, ExtendedStatus takes either
On or Off, whereas the argument list for AddType is a single value (the MIME type)
followed by a list of values (the extensions to associate with that type). Your directive
handler will need to know how Apache will present the configuration data to make
intelligent decisions about how to store the data. The way your directive handler
interacts with Apache and the argument list is actually configured by the value
specified in the args_how key in the Makefile.PL and the prototype given to your
directive handler in your module.

As with request-time handlers, which receive the Apache request object as their first
argument, directive handlers also receive a Perl object by default. Actually they receive
two: an object for storing away data, and an object containing information about the

Listing 7.9 (continued)

10 0672322404 CH07 10/31/02 2:28 PM Page 242

243CHAPTER 7 Creating Handlers

directive itself that can only be known by Apache, such as the server under which the
directive is configured. By convention these two objects are placed into the $cfg and
$parms variables. The data that follows these two parameters is whatever information
accompanied the directive in the httpd.conf.

For the moment, we can safely ignore $parms: A more detailed discussion is
forthcoming in Recipe 7.10. The object held in $cfg, however, is of the utmost
importance, because it is what you will use to store your configuration data so that you
can access it again at request time.

$cfg actually contains a reference to a hash bless()ed into the class of our directive
handler. Similar to other handlers, there are two ways to retrieve this object. The first
way is to pull it from the argument list:

my ($cfg, $parms, $arg) = @_;

The other way is by retrieving the object directly using the Apache::ModuleConfig
class, passing the current request and your package name to its get() method:

my $cfg = Apache::ModuleConfig->get(Apache->request, __PACKAGE__);

These two forms are analogous to the shift() and Apache->request() idioms used to
access the Apache request object. Just as Apache->request() always retrieves the same
request object rather than creating a new object, so does Apache::ModuleConfig’s get()
method always dig out the configuration data for your module. At this point, however,
there is no data in $cfg. You can specify any behavior in your directive handler you
want, but this example is in need of nothing terribly complex. If the incoming
arguments pass muster, both the CleanLevel() and CleanOption() directive handlers
populate keys within the hash reference held in $cfg.

Remember that if the number of arguments fails to meet the prototype, or the
directive appears someplace other than an area allowed by req_override, Apache will
handle the exception by halting its startup routine and displaying an informative
message. In cases where you might want to halt Apache yourself due to an invalid
argument or other such data error, the appropriate action is to simply die() with an
error message.

The point of this entire exercise has been to define directives that supply meaningful
data to your handler, so we need a method for extracting the data from within our
handler() subroutine at request time. For this we use the explicit call to
Apache::ModuleConfig->get() just mentioned, which returns the same object
populated by our directive handler.

10 0672322404 CH07 10/31/02 2:28 PM Page 243

244 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

The very last step after running the canonical perl Makefile.PL, make and friends (we
promise) is to alter your httpd.conf to reflect the new directives, as shown in the
solution to this recipe.

There are a few things to note about our new configuration. The first is that you must
use the PerlModule directive to load your module, even though for modules without
custom directives a use() call within a startup.pl is all that is normally required.
Because we are using some trickery to make Apache think our Perl module is a really a
C module, the PerlModule directive also has to appear before any directives that are
implemented by your directive handlers, as shown in the solution configuration.

The other, more important, item is that although you have implemented a new
directive, nothing has been said about which phase your module will handle. If you
examined the generated Clean.xs file closely, you would have seen that all the handler
slots were set to NULL. This means that despite all of your hard work, you still need
mod_perl’s Perl*Handler directives to add your module to a particular request phase.

Even though the meal we have prepared here is rather dense and hard to digest, don’t
reach for the antacid too soon. In addition to the recipes presented in the remainder of
this chapter, many examples are available of custom directives in action, both in
Writing Apache Modules with Perl and C and several modules on CPAN, including
Apache::Dispatch, Apache::Language, and Apache::RefererBlock to name only a few.
Looking at the code provided by all of these sources ought to put the wind in your
sails and get you on your way.

7.9. Expanding Custom Directive Prototypes

None of the args_how options seem to fit what you want to do—you need an
unavailable prototype.

Technique

Use the RAW_ARGS prototype—it’s not just for containers.

sub UserDir ($$$;*) {

Provide a subset of mod_userdir support, eg

UserDir public_html ./ (ITERATE-esque)

UserDir disable root ftp (ITERATE2-esque)

10 0672322404 CH07 10/31/02 2:28 PM Page 244

245CHAPTER 7 Creating Handlers

my ($cfg, $parms, $args, $fh) = @_;

UserDir is implemented as a PerlTransHandler

so we can use a per-server configuration.

$cfg = Apache::ModuleConfig->get($parms->server, __PACKAGE__);

my @directives = split “ “, $args;

if ($directives[0] =~ m/^disabled?$/i) {

Continue along...

}

}

Comments

You probably paid it no attention, but now that you are starting to write your own
Apache directives you might wonder exactly how mod_userdir implements its UserDir
directive. The directive is documented to take either a list of subdirectories or the
keywords disabled or enabled followed by an optional list of usernames. Each of these
three options is covered by an existing prototype, but the combination of all of them
does not fit into an existing model. As it turns out, mod_userdir handles the multiple-
prototype situation deftly using RAW_ARGS and parsing the argument string itself.

The typical example given for RAW_ARGS is for the creation of container directives. In
these cases the fourth argument passed to the directive handler, a filehandle
corresponding to the configuration file, is read and processed until an enclosing block
is found.

sub Balast ($$$;*) {

my ($cfg, $parms, $args, $fh) = @_;

(my $boat = $args) =~ s/>$//; # strip the trailing >

while (my $line = <$fh>) {

last if $line =~ m!</Balast>!; # exit if the end tag is found

next if $line =~ m!^\s*#!; # skip over comments

Do something useful with $line...

}

}

10 0672322404 CH07 10/31/02 2:28 PM Page 245

246 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

However, the third argument passed back to a RAW_ARGS prototype is the remainder of
the line containing the directive itself after the directive token has been removed. In
the case of container directives, this represents the focus of the container, such as
/usr/local/apache/htdocs> for a <Directory> corresponding to DocumentRoot. Pay
attention to that final >— this truly is raw data that you have before you, capable of
being manipulated however you want.

Using RAW_ARGS for directives other than containers is a convenient way of dealing
with prototypes that do not fit neatly into any of the other models. Directives that
occupy only a single line can safely ignore the input filehandle $fh and operate only on
$args, as in the example UserDir() subroutine, which splits the argument list on
whitespace and decides what to do from there.

7.10. Merging Custom Configuration Directives

You want your custom directives to properly inherit from parent directories and/or
servers.

Technique

Create DIR_CREATE() and DIR_MERGE(), or SERVER_CREATE() and SERVER_MERGE()
subroutines.

package Cookbook::Clean;

use Apache::Constants qw(OK DECLINED);

use Apache::File;

use Apache::Log;

use Apache::ModuleConfig;

use DynaLoader ();

use HTML::Clean;

use 5.006;

our $VERSION = ‘0.02’;

our @ISA = qw(DynaLoader);

__PACKAGE__->bootstrap($VERSION);

10 0672322404 CH07 10/31/02 2:28 PM Page 246

247CHAPTER 7 Creating Handlers

use strict;

sub handler {

my $r = shift;

my $log = $r->server->log;

my $cfg = Apache::ModuleConfig->get($r, __PACKAGE__);

unless ($r->content_type eq ‘text/html’) {

$log->info(“Request is not for an html document - skipping...”);

return DECLINED;

}

my $fh = Apache::File->new($r->filename);

unless ($fh) {

$log->warn(“Cannot open request - skipping... $!”);

return DECLINED;

}

Slurp the file (hopefully it’s not too big).

my $dirty = do {local $/; <$fh>};

Create the new HTML::Clean object.

my $h = HTML::Clean->new(\$dirty);

Set the level of suds.

$h->level($cfg->{_level});

No need to check before dereferencing since we can now

initialize our data in DIR_CREATE().

$h->strip($cfg->{_options});

Send the crisp, clean data.

$r->send_http_header(‘text/html’);

print ${$h->data};

return OK;

}

10 0672322404 CH07 10/31/02 2:28 PM Page 247

248 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

sub CleanLevel ($$$) {

my ($cfg, $parms, $arg) = @_;

die “Invalid CleanLevel $arg!” unless $arg =~ m/^[1-9]$/;

$cfg->{_level} = $arg;

}

sub CleanOption ($$@) {

my ($cfg, $parms, $arg) = @_;

my %possible = map {$_ => 1} qw(whitespace shortertags blink contenttype

comments entities dequote defcolor

javascript htmldefaults lowercasetags);

if ($possible{lc $arg}) {

$cfg->{_options}{lc $arg} = 1;

}

else {

die “Invalid CleanOption $arg!”;

}

}

sub DIR_CREATE {

Initialize an object instead of using the mod_perl default.

my $class = shift;

my %self = ();

$self{_level} = 1; # default to 1

$self{_options} = {}; # now we don’t have to check when dereferencing

return bless \%self, $class;

}

sub DIR_MERGE {

Allow the subdirectory to inherit the configuration

of the parent, while overriding with anything more specific.

my ($parent, $current) = @_;

10 0672322404 CH07 10/31/02 2:28 PM Page 248

249CHAPTER 7 Creating Handlers

my %new = (%$parent, %$current);

return bless \%new, ref($parent);

}

1;

Comments

For most applications, the simple directive implementation given in Recipe 7.8 is
usually enough However, because the explanation there was already sufficiently
intense, we purposefully left out some rather complex details that are important if you
want to be able to have your directives merge through your configuration in the same
manner that, say, PerlSetVar does.

Consider the situation where you have a <Directory> with one set of custom directives
and an .htaccess file with a partial list of directives for the same module. Apache’s
default behavior is to apply only those directives in the .htaccess file and ignore any
defined in the parent <Directory> container. Although this might not seem all too
reasonable, Apache is about flexibility: You have the ability to supply your own merge
routines if the default behavior does not suit your needs. As with the aspects of the
directive handler API we have discussed so far, directive merging is not as simple a
concept as some of the other programming techniques in this book, but its application
is rather straightforward. If you already have working custom directives, then the hard
part is (far) behind you.

The mechanism by which Apache allows modules to define their own merging
behavior is separated into four separate routines: server configuration creation,
directory configuration creation, and merging for each. As we hinted in Recipe 7.8,
there is more to the Apache module record than the Apache command record. The
module record is also used to define the routines that will handle each of these phases.
As before, because Apache needs a fully populated module record prior to request
time, the real work is done over in XS-land with the call to command_table() within
the Makefile.PL.

The good news is that there is no additional fiddling that needs to be done to the
Makefile.PL; all is handled from within your Perl module. You will need to define any
combination of these four subroutines, each corresponding to a phase of the Apache
configuration process outlined previously: DIR_CREATE(), DIR_MERGE(),
SERVER_CREATE(), and/or SERVER_MERGE(). If you were wondering why the
Makefile.PL had to contain a package declaration, this is the reason: command_table()

10 0672322404 CH07 10/31/02 2:28 PM Page 249

250 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

checks whether your module, for instance, can(‘SERVER_MERGE’) and populates the
Apache module record accordingly in the .xs file it generates. Tricky.

These two sets of routines perform essentially the same function. The DIR_CREATE()
and SERVER_CREATE() subroutines are used to create the storage object for your
module’s configuration data. For Perl this is a relatively simple and idiomatic task—
merely bless() a hash reference into the current class and return it. The object you
create in these routines will supercede the default $cfg object created by mod_perl we
used in Recipe 7.8. However, mod_perl will still manage it for your class so that calls
to Apache::ModuleConfig->get() behave just as they did before. If you want to define
any default values for your directive you can do so here, as we did by initializing both
$cfg->{_level} and $cfg->{_options}, which frees us of the need to check before
dereferencing them in our handler().

The DIR_MERGE() and SERVER_MERGE() subroutines define how directives will merge
when configurations overlap. They both receive two objects in their argument list: the
object from the parent configuration, as well as that from the current configuration (if
one exists). They can then decide on an appropriate course of action. Typically, this is
to summarily override the parent configuration with the current configuration, while
allowing the parent to fill in any empty values.

Even though Apache has placed directive merging completely under your control at
this point, you certainly do not have to follow this sweeping model. The following
example allows users to decide whether they want to inherit from the parent configu-
ration.

sub SERVER_MERGE {

Require the SubMerge flag to be set before merging directives.

my ($parent, $current) = @_;

if ($current->{_merge}) {

my %new = (%$parent, %$current);

return bless \%new, ref($parent);

}

return $current;

}

Although DIR_CREATE() and SERVER_CREATE() are functionally equivalent, there are
differences in when they come into play and how you must interact with them in your
handler. SERVER_CREATE() is called when Apache is started, once for the main server,
and once for each virtual host. SERVER_MERGE() is also called at server startup, where it

10 0672322404 CH07 10/31/02 2:28 PM Page 250

251CHAPTER 7 Creating Handlers

then merges any configuration data found in the virtual hosts with that from the main
server.

For per-directory configurations things are slightly different. Like SERVER_CREATE(),
DIR_CREATE() is called once for each configured server when Apache is started.
However, it is also called once at startup for each <Location> or <Directory> where a
custom directive appears. DIR_CREATE() further differs in that it is also called at request
time whenever Apache encounters an .htaccess file. DIR_MERGE() is called at request
time, running whenever a request enters a <Location>, <Directory>, or other
container that can potentially be merged.

As you recall from Recipe 7.8, the configuration object on the argument list to our
directive handler was the same one that could be retrieved directly using the Apache
request object and the Apache::ModuleConfig class,

my $cfg = Apache::ModuleConfig->get($r, __PACKAGE__);

which is the syntax we use at request time. As it turns out, this is the per-directory
configuration object, created either with DIR_CREATE() or by mod_perl’s default
routine. Thus, interacting with per-directory configurations is exactly the same as in
Recipe 7.8. In fact, in Recipe 7.8 we were working on a per-directory basis all along,
you just didn’t know it!

Dealing with per-server configurations is a bit more complex, but the basic steps are
the same. First, we have to populate a per-server configuration object within our
directive handler. Then, at request time, we need to retrieve the same per-server
object to access our data. Because per-directory configurations are the default,
mod_perl offers a few shortcuts to them, such as passing the per-directory object
($cfg) to our directive handler through the argument list. However, for per-server
configurations we have to do things explicitly.

It is easier to begin this part of the discussion with what happens at request time. As
we discussed in Chapter 4, data related to the server configuration is available through
the Apache server record. This happens to include any per-server configuration data.
The object containing the per-server configuration for your module can be retrieved
by passing Apache::ModuleConfig->get() an Apache::Server object as the first
argument:

my $scfg = Apache::ModuleConfig->get($r->server, __PACKAGE__);

This leaves only one piece remaining—how to differentiate between per-server and
per-directory configurations within the actual directive handler. Well, this leads us to
explain some of the details we left out of Recipe 7.8.

10 0672322404 CH07 10/31/02 2:28 PM Page 251

252 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

For per-server configurations, the solution rests in the second argument passed to your
directive handler: the Apache::CmdParms object $parms, which represents yet another
Apache record (cmd_parms to be specific). The full list of information available through
this object is outlined in Table 7.3.

Table 7.3 Apache::CmdParms Methods

Method Description

cmd() An Apache::Command object, which provides access to the Apache command
record for this directive.

getline() Provides direct access to the httpd.conf.

info() Data corresponding the cmd_data field in the Apache command record for
this directive.

limited() A bitmask representing any <Limit> directives that apply to this directive.

override() A bitmask representing the values set in req_override in the Apache
command record for this directive.

path() The <Location> or <Directory> to which the directive applies.

server() Returns an Apache::Server object corresponding to the server to which the
directive applies.

As we hinted in Recipe 7.8, in practice much of the information available through the
Apache::CmdParms class is rarely used. The notable exception to this is the server()
method, which contains an Apache::Server object for the server to which the directive
is being applied. This is used to access the per-server configuration directive object
created by SERVER_CREATE(). For instance, if we had wanted to implement CleanLevel
on a per-server basis instead, we could have used the following:

sub CleanLevel ($$$) {

my ($cfg, $parms, $arg) = @_;

Get the per-server configuration from the current Apache server record.

We ignore the passed in, per-directory object $cfg.

my $scfg = Apache::ModuleConfig->get($parms->server, __PACKAGE__);

CleanLevel and CleanWithBleach are equivalent directives, but

we like to know which they used anyway. We can tell by getting

the data from the cmd_data slot.

$scfg->{_bleach} = $parms->info;

Continue along...

}

10 0672322404 CH07 10/31/02 2:28 PM Page 252

253CHAPTER 7 Creating Handlers

The per-server configuration object can then be accessed in your handler via
Apache::ModuleConfig->get() class using an Apache::Server object as the first
argument, as previously illustrated.

Now that you have the ability to create both per-server and per-directory configu-
rations, you might find yourself wondering whether to use one, the other, or both.
Because limiting your runtime overhead wherever possible makes sense, if your
directive is going to be applied on only a per-server basis, using only the
SERVER_CREATE() and SERVER_MERGE() routines and limiting where the directive can
occur via the req_override setting in the Apache command record is the correct
approach. This might happen if you are configuring a PerlTransHandler or
PerlPostReadRequestHandler, both of which are incapable of residing inside of a
<Location> or other container directive.

Obviously, if you want to perform per-directory merges you will want to stick with
DIR_CREATE() and DIR_MERGE(). One thing that may not be immediately obvious,
however, is that you do not have to manage both per-directory and per-server configu-
rations unless you want to enforce separate and distinct behaviors—per-directory
directives that exist on a per-server level are merged into <Location> and friends due
to a single DIR_MERGE call for each virtual host at startup.

7.11. Overriding Core Directives

You want to transparently override a core server directive using your own custom
directive.

Technique

Go ahead.

package Cookbook::WinBitHack;

BEGIN {

eval{

require Win32::File;

Win32::File->import(qw(READONLY ARCHIVE));

};

}

10 0672322404 CH07 10/31/02 2:28 PM Page 253

254 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

use Apache::Constants qw(OK DECLINED OPT_INCLUDES DECLINE_CMD);

use Apache::File;

use Apache::ModuleConfig;

use DynaLoader;

use 5.006;

use strict;

our $VERSION = ‘0.01’;

our @ISA = qw(DynaLoader);

__PACKAGE__->bootstrap($VERSION);

sub handler {

Implement XBitHack on Win32.

Usage: PerlModule Cookbook::WinBitHack

PerlFixupHandler Cookbook::WinBitHack

XBitHack On|Off|Full

my $r = shift;

my $cfg = Apache::ModuleConfig->get($r, __PACKAGE__);

return DECLINED unless (

$^O =~ m/Win32/ && # we’re on Win32

-f $r->finfo && # the file exists

$r->content_type eq ‘text/html’ && # and is HTML

$r->allow_options & OPT_INCLUDES && # and we have Options +Includes

$cfg->{_state} ne ‘OFF’); # and XBitHack On or Full

Gather the file attributes.

my $attr;

Win32::File::GetAttributes($r->filename, $attr);

Return DECLINED if the file has the ARCHIVE attribute set,

which is the usual case.

return DECLINED if $attr & ARCHIVE();

Set the Last-Modified header unless the READONLY attribute is set.

if ($cfg->{_state} eq ‘FULL’) {

10 0672322404 CH07 10/31/02 2:28 PM Page 254

255CHAPTER 7 Creating Handlers

$r->set_last_modified((stat _)[9]) unless $attr & READONLY();

}

Make sure mod_include picks it up.

$r->handler(‘server-parsed’);

return OK;

}

sub DIR_CREATE {

my $class = shift;

my %self = ();

XBitHack is disabled by default.

$self{_state} = “OFF”;

return bless \%self, $class;

}

sub DIR_MERGE {

my ($parent, $current) = @_;

my %new = (%$parent, %$current);

return bless \%new, ref($parent);

}

sub XBitHack ($$$) {

my ($cfg, $parms, $arg) = @_;

Let mod_include do the Unix stuff - we only do Win32.

return DECLINE_CMD unless $^O =~ m/Win32/;

if ($arg =~ m/^(On|Off|Full)$/i) {

$cfg->{_state} = uc($arg);

}

else {

die “Invalid XBitHack $arg!”;

}

}

1;

10 0672322404 CH07 10/31/02 2:28 PM Page 255

256 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

Comments

Recipe 6.5 discussed how the XBitHack directive is essentially useless on the Win32
platform. Whereas in the last chapter we implemented a PerlFixupHandler to remedy
the problem, the issue remained that the XBitHack directive still pointed to the
mod_include implementation; there is the (albeit slight) possibility that unexpected
behaviors could arise where the two implementations collide. A better solution would
be to override the default XBitHack directive with our own implementation so that
mod_include is sure not to be in the way.

Our new Cookbook::WinBitHack combines attributes from all the other custom
directive examples we have seen so far. It bootstraps itself, merges directives on a per-
directory basis, and provides a directive handler subroutine. The only thing new here
is the inclusion of the DECLINE_CMD constant, which is similar to the standard DECLINE
constant except that DECLINE_CMD is designated for use within directive handlers.
Basically, we are telling Apache that if a certain criterion is met (the platform is not
Win32), we would like to decline handling this directive and instead pass it back to
Apache, which will then seek another handler to process it.

The only pitfall to be wary of when choosing to decline processing a directive comes
when using RAW_ARGS to implement a container directive. As you recall from Recipe
7.9, the RAW_ARGS prototype passes the directive handler an open filehandle as the final
argument in the argument list. This filehandle is actually a tied filehandle that reads
from httpd.conf using a native Apache utility routine. Because of this, there is no way
to inspect the raw data within a container directive and seek() back to return what
you read. Thus, you should not use data read from $fh to determine whether you will
return DECLINE_CMD.

The use of DECLINE_CMD here, along with some nonstandard syntax to bring in
Win32::File constants, allows us to reuse the same httpd.conf for both Win32 and
Unix servers. If we are running on Win32 everything proceeds as planned: the
XBitHack directive is intercepted and our PerlFixupHandler is run. If we are on some
other platform, the code will still compile, but Cookbook::WinBitHack will not
interfere, and instead pass all XBitHack processing over to mod_include. Both
Apache::AutoIndex and Apache::Language use a similar approach to pass the Perl
implementations of mod_autoindex and mod_mime over to their faster C
counterparts.

return DECLINE_CMD if Apache->module(‘mod_autoindex.c’);

For the sake of clarity, here is the corresponding Makefile.PL for our new
Cookbook::WinBitHack.

10 0672322404 CH07 10/31/02 2:28 PM Page 256

257CHAPTER 7 Creating Handlers

Listing 7.10 Makefile.PL for Cookbook::WinBitHack

package Cookbook::WinBitHack;

use ExtUtils::MakeMaker;

use Apache::ExtUtils qw(command_table);

use Apache::src ();

use Config;

use strict;

my @directives = (

{ name => ‘XBitHack’,

errmsg => ‘Off, On, or Full - On and Full are equivalent’,

args_how => ‘TAKE1’,

req_override => ‘OR_OPTIONS’, },

);

command_table(\@directives);

my %config;

$config{INC} = Apache::src->new->inc;

if ($^O =~ m/Win32/) {

require Apache::MyConfig;

$config{DEFINE} = ‘ -D_WINSOCK2API_ -D_MSWSOCK_ ‘;

$config{DEFINE} .= ‘ -D_INC_SIGNAL -D_INC_MALLOC ‘

if $Config{usemultiplicity};

$config{LIBS} =

qq{ -L”$Apache::MyConfig::Setup{APACHE_LIB}” -lApacheCore } .

qq{ -L”$Apache::MyConfig::Setup{MODPERL_LIB}” -lmod_perl};

}

WriteMakefile(

NAME => ‘Cookbook::WinBitHack’,

VERSION_FROM => ‘WinBitHack.pm’,

PREREQ_PM => { mod_perl => 1.26_01 },

ABSTRACT => ‘An XS-based Apache module’,

AUTHOR => ‘authors@modperlcookbook.org’,

clean => { FILES => ‘*.xs*’ },

%config,

);

10 0672322404 CH07 10/31/02 2:28 PM Page 257

258 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

If you are salivating at the thought that, because Perl can pass off processing to C on-
the-fly, perhaps there is a way to remove extraneous C modules from the server
altogether when the functionality is implemented in Perl. Well, it’s quite devious, but
it is possible using the Apache::Module class, which is not part of the mod_perl distri-
bution but is available from CPAN. At the time of writing, Apache::Module has not yet
been ported to Win32.

The Apache::Module class provides an interface into the Apache module record we
have been tiptoeing around. The Apache module record defines exactly what phases of
the Apache lifecycle the module will be entering, which routines it will use to handle
these phases, and some additional information important to either Apache or the
module itself. Again, the exact structure of the module record can be found in
http_config.h, along with some helpful documentation.

Internally, Apache maintains a linked list of module records for all the active modules.
This list is not necessarily the same as the modules compiled into the server, but
represents the modules Apache will consider when it comes across a directive token in
httpd.conf or when serving a request. The Apache::Module class provides hooks into
the Apache module record and allows you to inspect it and (rarely and unwisely)
manipulate it.

Because mod_include implements the actual Server Side Include engine used to
implement our version of XBitHack, you probably would not want to remove
mod_include from your configuration altogether. However, if you really want to steal
the wind from another module, using Apache::Module->remove() outside of a
handler() subroutine will deactivate the module in a manner similar to the
ClearModuleList directive, but for a single module.

use Apache::Module ();

my $modp = Apache::Module->find(‘userdir’);

$modp->remove if $modp;

sub handler {

my $r = shift;

Continue along...

}

Although novel, operating on the Apache module record in this manner is generally
very unwise; a better solution would be to use ClearModuleList and AddModule, which
will almost certainly result in less segfaults.

10 0672322404 CH07 10/31/02 2:28 PM Page 258

259CHAPTER 7 Creating Handlers

While we are on the topic, one of the more constructive uses for Apache::Module is
within a directive handler. The Apache::Module distribution also provides the
Apache::Command class, which provides the runtime interface for the Apache command
record. You will remember this record as where all the settings that you specified in
Makefile.PL and passed to command_table() finally reside. Each of the methods from
the Apache::Command class corresponds to the name of a field in the Apache command
record as given in Recipe 7.8, so there is no reason to list them here. And as previously
mentioned, you can obtain an Apache::Command object by calling the cmd() method on
the Apache::CmdParms object passed to your subroutine ($parms in our examples).

Although the route to the Apache::Command object is rather circuitous, it can be
somewhat useful in exception handling during server startup. The following code will
allow you to not have to repeat the usage for your directive a second time. It pulls the
information right from the data you provided in your Makefile.PL.

sub XBitHack ($$$) {

my ($cfg, $parms, $arg) = @_;

if ($arg =~ m/^(On|Off|Full)$/i) {

$cfg->{_state} = uc($arg);

}

else {

die “Invalid $arg! “, (join “ “, $parms->cmd->name,

$parms->cmd->errmsg);

}

}

7.12. Adding Unique Server Tokens

You want to modify the outgoing Server response header to represent your module.

Technique

Use the Apache::add_version_component() function.

package Apache::WinBitHack;

use strict;

10 0672322404 CH07 10/31/02 2:28 PM Page 259

260 MOD_PERL DEVELOPER’S COOKBOOK

PART II The mod_perl API

our $VERSION = ‘0.01’;

our @ISA = qw(DynaLoader);

my ($module) = __PACKAGE__ =~ /.*::(.*)/;

Apache::add_version_component(“$module/$VERSION”);

Continue along...

Comments

Although we certainly do not advocate that you maim the Server header for every
module that you write, if you put a great deal of effort into an application, you might
want to put your mark on it. Using the add_version_component() function will add
your token to the end of the Server header, resulting in something similar to this:

Server: Apache/1.3.22 (Unix) mod_perl/1.26 WinBitHack/0.01

If you tried simply modifying the Server header for the response using
$r->headers_out->set(), you quickly found it had no effect (though we are proud of
you for trying). This is because Apache overwrites the Server header with whatever
was populated using the official Apache API when you call $r->send_http_header().

If you are interested in finding out what the Server header will be at runtime, you can
use the SERVER_VERSION constant from Apache::Constants, which is really a call to
ap_get_server_version() from the Apache C API.

One final option for varying the Server header is to set the
$Apache::Server::AddPerlVersion global to a true value in your startup.pl, which
will signal mod_perl to add the version of perl that is embedded in Apache as well.

7.13. Releasing a Module to CPAN

You want to release your module to CPAN under the Apache namespace.

Technique

Make up a distribution tarball as in Recipe 7.5, and then follow these instructions.

10 0672322404 CH07 10/31/02 2:28 PM Page 260

261CHAPTER 7 Creating Handlers

Comments

Generally, it is a good idea before releasing a module to CPAN to discuss it in an
appropriate forum and get some initial feedback. For most Perl modules the
newsgroup comp.lang.perl.modules is the place to provide an RFC describing the
nature of your module, the needs it fills that cannot be provided for by other modules,
decide on the namespace the module ought to occupy, and so on.

The approach for mod_perl modules is slightly different than that of the rest of
CPAN. The Apache:: namespace has been reserved for modules that cannot exist
outside of the mod_perl environment (with a few historical exceptions, like
Apache::Session). As such, the Apache tree maintains its own module list,
apache-modlist.html, which comes as part of the mod_perl distribution. Because the
mod_perl community is essentially a self-governing subset of CPAN, it is normal
practice before releasing your module to present it as an RFC to the mod_perl mailing
list, modperl@perl.apache.org. Unlike many other Perl mailing lists, the mod_perl list
tends to be friendly and flame-free. The people there spend an inordinate amount of
time assisting both newbies and seasoned programmers to the benefit of all, so you
shouldn’t feel intimidated.

Releasing an RFC will accomplish a few objectives. First, it will help you determine
whether the concept you are proposing is too broad, too narrow, not extensible
enough, or duplicates an existing module. It will also give you a chance to improve
your module almost immediately due to the aggregate knowledge available that comes
from an open-source approach.

After receiving the feedback and coming to an agreement with the community, you
can safely release your module to CPAN following the normal procedures listed in
http://www.cpan.org/modules/04pause.html. After you have received a confirmation
e-mail acknowledging the success of your upload, send an e-mail to the mod_perl
mailing list using a subject line similar to

[ANNOUNCE] Apache::Pollywog-0.01

The final step is to edit apache-modlist.html to include the details of your module
and e-mail a diff generated patch to the mod_perl development mailing list at
dev@perl.apache.org.

$ cp apache-modlist.html apache-modlist.html~

$ vi apache-modlist.html~

$ diff -u apache-modlist.html apache-modlist.html~ > apache-modlist.diff

Now you are free to fix the bugs the users of your module will uncover.

10 0672322404 CH07 10/31/02 2:28 PM Page 261

