
CHAPTER 1

Installing mod_perl

Introduction

The first step to a successful mod_perl server is the installation
of mod_perl itself. As you will quickly find out, mod_perl is
incredibly powerful and flexible in all respects—as with Perl,
there is always more than one approach, and installation is no
exception.

This chapter gives you the knowledge and resources you need
to successfully build, verify, and understand a basic mod_perl
server installation. This is important not only for the system
administrator who may be responsible for maintaining an instal-
lation, but also for the developers who write applications against
it. It is also helpful to have a working mod_perl installation to
try out the recipes and example code throughout this book.

For the most part, a mod_perl installation consists of two parts:
the mod_perl enabled Apache server, and the Perl modules
required to support various mod_perl functions. At the end of a
typical installation, the Apache side of things will include an
httpd binary, as well as the all important httpd.conf configu-
ration file and the user documentation residing under
ServerRoot/manual/. The httpd binary may include all the
components required for mod_perl from Apache’s point of view,
or mod_perl may be found in the shared library mod_perl.so

D E V E L O P E R ’ S C O O K B O O K

03 0672322404 CH01 10/31/02 2:26 PM Page 9

10 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

that is dynamically incorporated into Apache at runtime. In either case, the end result
is a fully functional and persistent perl interpreter embedded into the Apache server.

Having a working perl interpreter is only part of the story. Normal mod_perl
operation requires a number of different Perl modules, such as Apache::Registry and
Apache::Constants. These are installed into the site_perl directory of your Perl
installation, alongside of the various other third-party Perl modules you may have
installed.

These two parts are sometimes referred to as the “Apache side” and the “Perl side” of
a mod_perl installation. The important thing to understand about this symbiotic
relationship is that mod_perl ties in to both environments—because it joins Perl
modules with the Apache runtime, it requires a presence in both architectures in order
to function properly. If the distinction is not clear now, hopefully it will become
clearer as you delve into the mod_perl API in Part II.

With that bit of background behind us, we can progress to the topic at hand. To get
started using mod_perl you must first obtain a mod_perl-enabled Apache server.
Often, the fastest way to a working server is by enabling a binary distribution from
your operating system vendor. This way is useful if you are not accustomed to
compiling software from its source code, or are just interested in a functional server to
experiment with. Installation of a binary distribution is usually as easy as copying a few
files or editing a configuration file.

To get the highest performance, and the ability to tune your server at the most
granular level, you will want to compile from the mod_perl and Apache sources.
Compiling your own mod_perl-enabled Apache server gives you the ability to
customize your installation. While it is somewhat more complex to compile your own
server, as you will see in later chapters, the extra effort spent perfecting installation
will reap benefits later on.

1.1. Unix Binary Installation

You want to install a binary version of mod_perl on a Unix platform.

Technique

Determine your Unix variant and refer to the following platform-specific instructions.

03 0672322404 CH01 10/31/02 2:26 PM Page 10

11CHAPTER I Installing mod_perl

Comments

Many binary distributions of mod_perl are available for Unix. Each Unix vendor or
distribution has its own way of packaging and distributing binaries. This recipe covers
the most commonly used Unix distributions. Read on for installation instructions for
Linux, BSD variants, and Solaris.

At this time there are no known binary distributions of mod_perl for most other Unix
platforms (AIX, HP-UX, IRIX, etc.) Consult your operating system manuals for any
mod_perl packages that may have been recently added. Alternatively, see Recipe 1.4 to
learn how to install mod_perl from its source code. Keep in mind that binary packages
may not have been compiled with EVERYTHING=1, so compiling from source may be
preferred when testing recipes from this book.

RPM-Based Linux Distributions

Many Linux vendors, such as RedHat, SuSE, Mandrake, and Caldera, distribute
binaries via the RPM (RedHat Package Manager) packaging format. You can add
mod_perl to your system by having root access and a copy of the RPM package for
your system. The first step is to find a copy of the appropriate RPM file on your
installation media. You may see filenames like the following:

• RedHat: mod_perl-1.24_01-3.i386.rpm

• SuSE: mod_perl.rpm

• Mandrake: apache-mod_perl-1.3.19_1.26-3mdk.i586.rpm

• Caldera: mod_perl-1.24-2-i386.rpm

If you cannot find an RPM on the installation media, try the vendor’s Web site, or
http://www.rpmfind.net/.

Most RPMs are based on Apache’s Dynamic Shared Object (DSO) support. This
support allows the vendor to ship a generic Apache RPM with add-on module RPMs
for Apache extension modules like mod_perl. Be sure you have the base Apache
packages installed in this case. A simple

$ rpm -qa | grep -i apache

will find any Apache RPMs already installed. In most cases, if you do not have an
Apache RPM you will need to install one before installing the mod_perl RPM.

03 0672322404 CH01 10/31/02 2:26 PM Page 11

12 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

DSO, while great in concept, has had many problems in the past with memory leaks
and other oddities. Thus, third-party RPMs that include mod_perl as a statically
compiled module in the Apache binary (and override your vendor’s version) are also
available. See http://perl.apache.org/download/binaries.html for a canonical list.

After you have the RPMs, installation is as easy as

rpm -ivh mod_perl-1.24_01-3.i386.rpm

Preparing... ### [100%]

1:mod_perl ### [100%]

and uncommenting the LoadModule and AddModule directives in the httpd.conf present
on your system.

Debian GNU/Linux Distribution

Debian packages mod_perl as part of a special Apache package called apache-perl.
This version of Apache contains mod_perl statically compiled into the Apache server.
The easiest way to obtain this version is with the apt-get program:

apt-get install apache-perl

Consult the apt-get documentation for more information about downloading and
installing Debian packages.

Other Linux Distributions

If you are running Slackware, Stampede, or some other Linux variant, you may
be interested in the Alien package converter. Available from
http://www.kitenet.net/programs/alien/, Alien can convert packages from one
packaging format to another. This may allow you to use the RPM or Debian packages.

BSD Variants

FreeBSD and OpenBSD users have two easy ways to install mod_perl. The simplest
way is to use a precompiled third-party binary package. A more complex method
involves using the Ports system to automatically compile and install mod_perl.

It’s easy to install a binary package. Browse the pages at
http://www.FreeBSD.org/ports/ or http://www.openbsd.org/ports.html to find

03 0672322404 CH01 10/31/02 2:26 PM Page 12

13CHAPTER I Installing mod_perl

and download the mod_perl binary package for your flavor of BSD. Once downloaded
use the pkg_add utility to install it:

pkg_add mod_perl-1.26.tgz

You can also use the -r option to pkg_add to automatically find and download
mod_perl, like this:

pkg_add -r mod_perl

If you would rather automatically compile and install mod_perl, use the Ports system.
You will need to have an updated ports tree. This is often found at /usr/ports/ on
most FreeBSD systems. The following output shows the commands that build the
mod_perl package and install it for use.

cd /usr/ports/www/mod_perl

make

>> Attempting to fetch from ftp://gatekeeper.dec.com/pub/plan/perl/CPAN/

➥modules/by-module/Apache/.

Receiving mod_perl-1.26.tar.gz (372859 bytes): 100%

372859 bytes transferred in 3.5 seconds (105.24 kBps)

===> Extracting for mod_perl-1.26

>> Checksum OK for mod_perl-1.26.tar.gz.

===> mod_perl-1.26 depends on file: /usr/local/sbin/apxs - not found

===> Verifying install for /usr/local/sbin/apxs in /usr/ports/www/apache13

===> Extracting for apache-1.3.20

>> Checksum OK for apache_1.3.20.tar.gz.

===> Patching for apache-1.3.20

===> Applying FreeBSD patches for apache-1.3.20

===> Configuring for apache-1.3.20

Configuring for Apache, Version 1.3.20

+ using installation path layout: FreeBSD
(/usr/ports/www/apache13/files/FreeBSD.layout)

...

make install

Solaris Binary Packages

Sun provides a prebuilt version of Apache compiled with mod_perl in recent versions
of Solaris, beginning with Solaris 8. Three packages named SUNWapchd, SUNWapchr, and
SUNWapchu are all you need to get mod_perl on your system. You’ll find these packages

03 0672322404 CH01 10/31/02 2:26 PM Page 13

14 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

on the second Solaris 8 software CD-ROM. To install, insert the CD-ROM and
execute the following commands:

cd /cdrom/cdrom0/Solaris_8/Product

pkgadd -d . SUNWapchd

pkgadd -d . SUNWapchr

pkgadd -d . SUNWapchu

Once done you’ll find the installed files in /usr/apache/.

Final Touches

After you have installed your package of choice, you can verify that mod_perl is active
in your Apache server by following the instructions in Recipe 1.8.

1.2. Windows Binary Installation

You want to install a binary version of mod_perl on Microsoft Windows.

Technique

Download and install the complete Perl binary package or the PPM package.

Comments

Some Perl binary distributions contain mod_perl packaged with them (see
http://perl.apache.org/download/binaries.html for a link to one such package, as
well as http://www.indigostar.com/ for another). These types of distributions contain
relatively detailed installation instructions and also include a collection of popular
modules (such as LWP and Net::FTP) not included in the standard Perl distribution.

For users of ActivePerl or compatible perl binaries, mod_perl PPM (Perl Package
Manager) packages are available, as well as PPM packages for some other Perl
modules often used with mod_perl. For a partial list of links to these PPM packages,
see http://perl.apache.org/download/binaries.html. These can be installed in one
of two ways—directly from the command line as

C:\> ppm install http://ppm.example.com/ppmpackages/mod_perl.ppd

03 0672322404 CH01 10/31/02 2:26 PM Page 14

15CHAPTER I Installing mod_perl

or, from within the ppm interactive shell, as

C:\> ppm

ppm> set repository some_server http://ppm.example.com/cgi-bin/ppmserver?urn:/

➥PPMServer

ppm> install mod_perl

...

ppm> set save

ppm> quit

C:\>

which assumes http://ppm.example.com/ has installed on it the ppm server from the
PPM module from CPAN—doing so has the advantage of also being able to offer a
search utility of package and author names of the packages available from the site.

The mod_perl PPM package includes the mod_perl DLL (called mod_perl.so in
apache-1.3.15 and later, in accord with the Unix convention). When installed with the
ppm utility, a post-install script will offer to install this DLL in your Apache modules/
directory. Installing a PPM package that matches the version of the Apache binary you
are running is important for binary compatibility. Also in this regard, at the time of
writing, you must be using an ActivePerl version in the 6xx series (or compatible),
based on Perl-5.6.x, as earlier ActivePerl binaries in the 5xx series based on
Perl-5.005 are not binary-compatible.

Whichever binary you choose, be careful to use versions of Perl, mod_perl, and
Apache compiled against each other with the same compiler (generally Visual C++ 6),
because rapid changes in the Win32 world mean that often incompatibilities exist
between versions. As well, for binary compatibility, do not mix code compiled with
Visual C++ 5 and Visual C++ 6 (note that ActivePerl binaries in the 6xx series are
compiled with Visual C++ 6).

You can verify that mod_perl is installed by using Recipe 1.8.

1.3. Mac OS X Binary Installation

You want to use mod_perl with Apache on Apple’s Mac OS X platform.

Technique

Use the DSO version of mod_perl that Apple ships with Mac OS X.

03 0672322404 CH01 10/31/02 2:26 PM Page 15

16 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

Comments

The advent of Apple’s new Mac OS X operating system has some interesting ramifi-
cations for mod_perl and its community. First of all, the Macintosh is primarily
marketed as a computer for consumers, but Mac OS X is built on top of a fully
functional FreeBSD Unix system. The Unix layer has not been crippled or hidden
from the users, either—the “Terminal” application gives access to a command-line
shell, and there is at least one version of the X Window system that users can install
for running window-based Unix applications.

Best of all, every computer running Mac OS X comes with fully functional versions of
Perl, Apache, and mod_perl, making it a potentially attractive development machine.
This situation seems to be stable—Apple depends on Perl for many of the installation
and maintenance tasks that take place regularly on the computer, and Apache is the
Web server used for the operating system’s “Web Sharing” features.

The simplest way to install mod_perl on Mac OS X is to enable the DSO module
provided with the system. Using whatever text editor you like, add the following lines
to the file /etc/httpd/httpd.conf.

LoadModule perl_module libexec/httpd/libperl.so

AddModule mod_perl.c

You should add the LoadModule directive at the end of all the LoadModule directives
that already exist in the file, and the AddModule directive after all the existing
AddModule directives. Restart the Web server (by pressing “Stop” and then “Start” in
the Web Sharing section of the “System Preferences” Sharing pane), and you should
be all set. You can verify that mod_perl is installed by using Recipe 1.8.

1.4. Building mod_perl on Unix

You want to compile and install mod_perl from source on a Unix platform.

Technique

A full recipe for building on Unix would fill most of this chapter. The following recipe
gives a reasonably concise overview of the build process for mod_perl on the Apache
1.3 architecture. For full documentation, refer to the INSTALL and INSTALL.apaci files
in the mod_perl distribution.

03 0672322404 CH01 10/31/02 2:26 PM Page 16

17CHAPTER I Installing mod_perl

First, ensure that your system has the following:

• A recent installation of perl (5.005_03 or higher)

• An ANSI C compiler (gcc, for instance)

• make

• gzip and tar for uncompressing the source distribution archives

Additionally, it is highly recommended that you install the following CPAN modules
so that you can run the mod_perl test suite:

• libwww-perl

• HTML::Parser

Next, download the Apache and mod_perl source distributions. You can find the latest
version of mod_perl at http://perl.apache.org/dist/. Go to
http://www.apache.org/dist/httpd/ for the latest version of Apache.

CPAN also contains the mod_perl source distribution. However, some minor releases
do not show up on CPAN due to naming conventions (for example, 1.25 and 1.26
show up under modules/by-module/Apache/, but 1.25_01 does not).

When you have the source archives downloaded, a typical mod_perl installation
follows the same basic steps as installing any other Perl module, save a few specific
arguments when creating the Makefile. A simple configuration might look like the
following (slightly condensed and stripped of aesthetically unpleasing verbose output):

$ gzip -dc apache_1.3.22.tar.gz | tar -xvf -

$ gzip -dc mod_perl-1.26.tar.gz | tar -xvf -

$ cd mod_perl-1.26

$ perl Makefile.PL \

> APACHE_SRC=../apache_1.3.22/src \

> APACHE_PREFIX=/usr/local/apache \

> EVERYTHING=1 \

> DO_HTTPD=1 \

> USE_APACI=1 \

> APACI_ARGS=’--enable-module=rewrite, \

> --enable-module=info, \

03 0672322404 CH01 10/31/02 2:26 PM Page 17

18 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

> --enable-module=expires, \

> --disable-module=userdir’

Reading Makefile.PL args from ./makepl_args.mod_perl

Will configure via APACI

cp apaci/Makefile.libdir ../apache_1.3.22/src/modules/perl/Makefile.libdir

cp apaci/Makefile.tmpl ../apache_1.3.22/src/modules/perl/Makefile.tmpl

cp apaci/README ../apache_1.3.22/src/modules/perl/README

cp apaci/configure ../apache_1.3.22/src/modules/perl/configure

cp apaci/libperl.module ../apache_1.3.22/src/modules/perl/libperl.module

cp apaci/mod_perl.config.sh ../apache_1.3.22/src/modules/perl/mod_perl.config.sh

cp apaci/load_modules.pl ../apache_1.3.22/src/modules/perl/load_modules.pl

cp apaci/find_source ../apache_1.3.22/src/modules/perl/find_source

cp apaci/apxs_cflags ../apache_1.3.22/src/modules/perl/apxs_cflags

cp apaci/perl_config ../apache_1.3.22/src/modules/perl/perl_config

cp apaci/mod_perl.exp ../apache_1.3.22/src/modules/perl/mod_perl.exp

PerlDispatchHandler.........enabled

PerlChildInitHandler........enabled

...

$ make

(cd ../apache_1.3.22 && PERL5LIB=/home/geoff/src/mod_perl-1.26/lib make)

make[1]: Entering directory `/home/geoff/src/apache_1.3.22’

===> src

make[2]: Entering directory `/home/geoff/src/apache_1.3.22’

make[3]: Entering directory `/home/geoff/src/apache_1.3.22/src’

===> src/regex

...

Manifying blib/man3/Apache::SIG.3

Manifying blib/man3/Bundle::Apache.3

Manifying blib/man3/Apache::Options.3

$ make test

(cd ../apache_1.3.22 && PERL5LIB=/home/geoff/src/mod_perl-1.26/lib make)

make[1]: Entering directory `/home/geoff/src/apache_1.3.22’

===> src

make[2]: Entering directory `/home/geoff/src/apache_1.3.22’

03 0672322404 CH01 10/31/02 2:26 PM Page 18

19CHAPTER I Installing mod_perl

make[3]: Entering directory `/home/geoff/src/apache_1.3.22/src’

===> src/regex

...

cp t/conf/mod_perl_srm.conf t/conf/srm.conf

../apache_1.3.22/src/httpd -f `pwd`/t/conf/httpd.conf -X -d `pwd`/t &

httpd listening on port 8529

will write error_log to: t/logs/error_log

letting apache warm up...\c

done

/usr/local/bin/perl t/TEST 0

modules/actions.....ok

modules/cgi.........ok

...

internal/taint......ok

All tests successful, 1 test skipped.

Files=34, Tests=457, 26 wallclock secs (20.90 cusr + 1.12 csys = 22.02 CPU)

kill `cat t/logs/httpd.pid`

rm -f t/logs/httpd.pid

rm -f t/logs/error_log

$ su

Password:

make install

(cd ../apache_1.3.22 && PERL5LIB=/home/geoff/src/mod_perl-1.26/lib make)

make[1]: Entering directory `/home/geoff/src/apache_1.3.22’

===> src

make[2]: Entering directory `/home/geoff/src/apache_1.3.22’

make[3]: Entering directory `/home/geoff/src/apache_1.3.22/src’

===> src/regex

...

make[2]: Leaving directory `/home/geoff/src/apache_1.3.22’

+--+

| You now have successfully built and installed the |

| Apache 1.3 HTTP server. To verify that Apache actually |

| works correctly you now should first check the |

03 0672322404 CH01 10/31/02 2:26 PM Page 19

20 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

| (initially created or preserved) configuration files |

| |

| /usr/local/apache/conf/httpd.conf

| |

| and then you should be able to immediately fire up |

| Apache the first time by running: |

| |

| /usr/local/apache/bin/apachectl start

| |

| Thanks for using Apache. The Apache Group |

| http://www.apache.org/ |

+--+

make[1]: Leaving directory `/home/geoff/src/apache_1.3.22’

Appending installation info to /usr/local/lib/perl5/5.6.1/i686-linux-thread-
multi/perllocal.pod

Now, as root, issue

/usr/local/apache/bin/apachectl start

to start the server.

Comments

Here is a brief explanation of the arguments we passed to the perl Makefile.PL
portion of the mod_perl build process. You can find a full listing of acceptable options
in Appendix A as well as in the INSTALL file in the mod_perl source distribution.

Table 1.1 Arguments Passed to perl Makefile.PL

Option Description

APACHE_SRC The directory that contains the Apache source headers.

APACHE_PREFIX The directory prefix that is prepended to the Apache installation.
Because we added APACHE_PREFIX to our example, it is not necessary
to cd over to the Apache sources and issue make install—mod_perl
does it for us. If you leave this argument out, you will have to install
Apache as well, and the preceding dialogue will look slightly
different.

EVERYTHING When true (EVERYTHING=1) enables all the available mod_perl hooks.
This includes all the advanced features of mod_perl such as authen-
tication and authorization control, configuration of the server with
Perl, output filtering, and more.

03 0672322404 CH01 10/31/02 2:26 PM Page 20

21CHAPTER I Installing mod_perl

DO_HTTPD When true (DO_HTTPD=1), mod_perl automatically builds Apache for
you; otherwise, it prompts for build instructions.

USE_APACI When true (USE_APACI=1), mod_perl uses the Apache AutoConf
Interface (APACI) for configuration, which is the preferred method.
The alternative is to use Apache’s manual configuration files, which
is becoming rapidly deprecated and is not covered here.

APACI_ARGS This is a comma-delimited string of APACI commands to pass to
Apache.

As a result of the installation, you should have an entire directory structure under
/usr/local/apache/ that you can configure to meet your needs. You will also have
several necessary Perl modules installed in Perl’s site_perl directory under the
Apache:: namespace. You can verify that mod_perl is active in your Apache server by
following the instructions in Recipe 1.8

If you encounter any problems getting mod_perl to compile properly, as well as any
runtime problems that appear to be caused by a broken installation, consult the
SUPPORT document in the mod_perl distribution for detailed information on the next
steps to take.

1.5. Building mod_perl on Windows

You want to compile and install mod_perl from source on Microsoft Windows.

Technique

Have patience.

Comments

At present, mod_perl requires Microsoft’s Visual C++ to compile on Win32. You will
also need to have compiled Apache from the source distribution, because the Apache
headers and library files will be needed. Upon unpacking the mod_perl distribution
from CPAN or from http://perl.apache.org/dist/, follow one of the following two
paths.

Table 1.1 (continued)

Option Description

03 0672322404 CH01 10/31/02 2:26 PM Page 21

22 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

Visual Studio Build

A. Run

C:\mod_perl> perl Makefile.PL

C:\mod_perl> nmake

which will set up some files needed for the library build.

B. Launch Visual Studio, and open the mod_perl dsp via the following

1. Select File -> Open Workspace

2. Select Files of type [Projects (*.dsp)].

3. Open mod_perl-1.26/src/modules/win32/mod_perl.dsp.

as in Figure 1.1.

Figure 1.1

Opening the mod_perl project in Visual Studio.

C. You will then need to add some Apache and Perl directories. To add the include
directories, follow these steps:

1. Select Tools -> Options -> [Directories].

2. Select Show directories for: [Include files] and add, as appropriate
for your system, the following, as shown in Figure 1.2:

• C:\apache_1.3.22\src\include

• C:\apache_1.3.22\src\os\win32 (needed for apache_1.3.22 and
greater) This should expand to C:\...\mod_perl-
1.26\src\modules\perl.

• C:\Perl\lib\Core

03 0672322404 CH01 10/31/02 2:26 PM Page 22

23CHAPTER I Installing mod_perl

Figure 1.2

Setting options.

D. To include the necessary libraries, select Project -> Add to Project -> Files,
and add, again as appropriate for your system, one of the following, as shown in
Figure 1.3:

• perl56.lib (or perl.lib) (for example, C:\Perl\lib\Core\perl56.lib)

• ApacheCore.lib (for example, C:\apache_1.3.22\src\Release\ApacheCore.lib)

Figure 1.3

Adding ApacheCore.lib to a project.

E. To reduce the size of the resulting DLL, select Project -> Settings ->
[C/C++] -> Category: [Code Generation] -> Use runtime library:

[Multithreaded DLL].

F. Finally, build the mod_perl DLL (mod_perl.so) by following these steps:

1. Select Build -> Set Active Configuration... -> [mod_perl - Win32
Release].

2. Select Build -> Build mod_perl.so.

03 0672322404 CH01 10/31/02 2:26 PM Page 23

24 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

You can then test the results by using

C:\mod_perl> nmake test

Complete the build by copying mod_perl.so to your appropriate Apache modules
directory

C:\mod_perl> copy src\modules\win32\Release\mod_perl.so \Apache\modules

and then issuing the command

C:\mod_perl> nmake install

to install the necessary Perl modules that support the mod_perl installation.

Command-Line Build

You can also build mod_perl, including mod_perl.so, entirely from the command line
by generating the Makefile as, for example (all on one line),

C:\mod_perl> perl Makefile.PL APACHE_SRC=..\apache_1.3.22 INSTALL_DLL=\Apache\

➥modules

The arguments accepted include

• APACHE_SRC: This gives the path to the Apache sources (for example,
..\apache_1.3.22). It is assumed that Apache has already been built in this
directory.

• INSTALL_DLL: This gives the location of where to install mod_perl.so (for
example, \Apache\modules). No default is assumed. If this argument is not given,
you must copy mod_perl.so manually.

• DEBUG: If true (DEBUG=1), a version with debugging enabled will be built (this
assumes that a corresponding Apache binary with debugging enabled has been
built). If false, or not given, a Release version will be built.

• EAPI: If true (EAPI=1), EAPI (Extended API) will be defined when compiling. This
is useful when building mod_perl against mod_ssl patched Apache sources. If this
flag is not defined, a warning is made about a possible crash when starting a
mod_ssl patched Apache. If EAPI is false, or not given, EAPI will not be defined.

03 0672322404 CH01 10/31/02 2:26 PM Page 24

25CHAPTER I Installing mod_perl

After generating the Makefile,

C:\mod_perl> nmake

C:\mod_perl> nmake test

C:\mod_perl> nmake install

completes the build.

If neither of these build procedures succeeds, be sure that you can successfully build
other Perl modules requiring a C compiler, to give you confidence that the failure is
not due to a misconfiguration of your Perl installation. If you can build other Perl
modules, try the mod_perl CVS version, as shown in Recipe 1.16, to see whether any
breakage has been fixed there. If this fails, ask for help on the mod_perl mailing list—
give your Perl and Apache version, what you tried, and the error that resulted.

You may feel some trepidation in using mod_perl on Win32 if you run into build
problems, because these can be particularly frustrating. Don’t get too discouraged,
however. Once built, mod_perl on Win32 is used very much like its Unix cousin, save
for the usual peculiarities and caveats for Perl and Apache in general on this platform
(this includes the fact that mod_perl on Win32 is limited to one interpreter at a time,
a restriction that will be lifted when Apache-2.0 and the associated mod_perl-2.0 are
released).

1.6. Building mod_perl on Mac OS X

You want to compile and install mod_perl from source on Apple’s Mac OS X platform.

Technique

Follow the basic Unix installation given in Recipe 1.4, tacking on a few extra steps
along the way.

Comments

If you expect to do any real development with mod_perl, you will probably want to
compile your own version of the server software from source. If you have any
experience building mod_perl on another Unix platform, you will find the process very
similar on Mac OS X, and the Recipe 1.4 will be your best guide.

03 0672322404 CH01 10/31/02 2:26 PM Page 25

26 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

Because the Mac OS X platform is fairly new, some platform-specific problems are still
being fixed in the mod_perl build process. The most successful way to compile so far
seems to be as a static module, using only the EVERYTHING=1 argument to perl
Makefile.PL. All build problems should ideally be fixed relatively soon, however—if
you run into problems the best sources of support are the mod_perl list and the Mac
OS X Perl list, macosx@perl.org.

A couple of things to note. First, you will need to install the OS X Developer Tools,
available for free download. As of this writing, the Developer Tools are free, but users
must register as Apple developers at http://www.apple.com/. Additionally many retail
versions of Mac OS X include the Developers Tools CD in the box.

The Developer Tools include such essential system components as make, the gcc
compiler (the executable is actually /usr/bin/cc, but it’s really the standard GNU gcc
compiler with some Apple enhancements), and other things developers will have a
hard time living without.

Second, most users will be running Mac OS X on Apple’s HFS+ file system, which, as
of this writing, uses case-insensitive filenames. This creates a couple of gotchas for
mod_perl development. First, the mod_perl installation process will encourage you to
install Perl’s LWP modules so that it can run a few HTTP requests to test mod_perl
before installing it. Unfortunately, at the time of this writing LWP installs its HEAD script
into the /usr/bin/ directory. Although the case of any filename is preserved on HFS+,
files called, say, FOO and foo cannot exist in the same directory. Thus LWP’s HEAD
program overwrites the Unix file-viewing utility /usr/bin/head. Here is a workaround
for this problem. You must be an Administrator to perform most of these steps—enter
your regular user password when prompted.

% cp /usr/bin/head ~/head

... install the LWP modules ...

% sudo mkdir /usr/local/bin

% sudo mv /usr/bin/HEAD /usr/bin/GET /usr/bin/POST /usr/local/bin/

% sudo mv /usr/bin/lwp-* /usr/local/bin/

% sudo mv ~/head /usr/bin/

This creates a /usr/local/bin/ directory, which is a more appropriate place than
/usr/bin/ to install the LWP utilities. If you already have a /usr/local/bin/ directory,
skip the mkdir step. The next few commands move the LWP utilities from /usr/bin/
into /usr/local/bin/, then finally put the head utility back into /usr/bin/ where it
belongs. If you don’t fix the HEAD problem properly, you may see verbose error
messages like Usage: HEAD [-options] <url>... when you try to use the head utility.

03 0672322404 CH01 10/31/02 2:26 PM Page 26

27CHAPTER I Installing mod_perl

Finally, the case-insensitive filesystem can create some security holes if you’re not
careful. If you use configuration directives like

<Files “foo.html”>

deny from all

</Files>

then a user may still be able to access foo.html by requesting FOO.html. Apache will
see that FOO.html doesn’t match the <Files> directive, so access will be granted. Then
the filesystem will deliver the file, because the name FOO.html is a valid name for the
file foo.html.

There is an Apache module called mod_hfs_apple, available from
http://www.opensource.apple.com/projects/darwin/darwinserver/ , which attempts
to solve this security problem. It may not solve the entire problem yet, however, so
check around for security updates before deploying an Apache server on HFS+ in
public. And when writing file-handling code in your own modules, try to keep the
case-insensitive nature of the HFS+ filesystem in mind so that you don’t create any
bugs or security holes of your own.

1.7. Building mod_perl as a Shared Library

You want to use mod_perl as a DSO (Dynamic Shared Object).

Technique

Add the USE_DSO=1 flag to your mod_perl build arguments.

$ perl Makefile.PL \

> APACHE_SRC=../apache_1.3.22/src \

> APACHE_PREFIX=/usr/local/apache \

> EVERYTHING=1 \

> DO_HTTPD=1 \

> USE_DSO=1 \

> USE_APACI=1 \

> APACI_ARGS=’--enable-module=rewrite, \

> --enable-module=info, \

> --enable-module=expires, \

> --disable-module=userdir’ \

Comments

Although most people who run production mod_perl environments choose to have
mod_perl compiled statically within their httpd binary, this option is not the only one.

03 0672322404 CH01 10/31/02 2:26 PM Page 27

28 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

Most Apache modules are capable of being loaded into the server dynamically,
including mod_perl.

Apache’s DSO (Dynamic Shared Object) feature allows you to add modules on-the-fly
at startup using httpd.conf directives. This feature has the advantage of allowing you
to adjust your binary based on your immediate needs, dropping and adding modules as
you fine-tune your application without recompiling Apache every time. It also makes
having a rather lightweight base Apache possible; because some modules (such as
mod_perl and mod_rewrite) are quite large, having them burdening your process size
when they are not necessary may not be desirable.

Using mod_perl as a DSO is just as easy as adding the USE_DSO=1 flag at build time and
letting mod_perl build Apache. If you look at the resulting httpd.conf, you will see
that the following lines were automatically added for you:

LoadModule perl_module libexec/libperl.so

AddModule mod_perl.c

As mentioned earlier, traditionally DSO installations have been considered less stable
than statically compiled versions. This situation is improving as both mod_perl and
Apache support for DSO matures. Be sure to check for recent mod_perl developments
in this area.

1.8. Testing Your Installation

You want to be sure that your Apache is mod_perl-enabled.

Technique

Check the Server response header via telnet.

$ telnet localhost 8080

Trying 127.0.0.1...

Connected to localhost

Escape character is ‘^]’.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 08 Oct 2001 14:43:18 GMT

Server: Apache/1.3.22 (Unix) mod_perl/1.26

03 0672322404 CH01 10/31/02 2:26 PM Page 28

29CHAPTER I Installing mod_perl

Last-Modified: Fri, 04 May 2001 00:00:38 GMT

ETag: “1c2cd-5b0-3af1f126”

Accept-Ranges: bytes

Content-Length: 1456

Connection: close

Content-Type: text/html

Content-Language: en

Connection closed by foreign host.

Comments

After attempting one of the installations outlined in this chapter, you will want to test
to see whether mod_perl was successfully installed. A simple telnet session ought to
be sufficient to check the Server response header and see whether mod_perl is
present. Of course, if your ServerTokens directive is set to something other than Full
(the default) you will not see the mod_perl token, even if your install was a success.

If things did not go smoothly and you find yourself here without a working instal-
lation, not to worry. Read over the INSTALL and SUPPORT documents in the mod_perl
distribution and scour the mod_perl mailing list archives from your favorite search
engine. Also, be sure to read the section on installation in the mod_perl Guide at
http://perl.apache.org/guide/—it is an invaluable document that addresses most of
the problems you might encounter.

1.9. Changing Apache Installation Directories

You want to change the default Apache installation directories.

Technique

Use the APACI --with-layout option with an entry from config.layout.

$ perl Makefile.PL \

> APACHE_SRC=../apache_1.3.22/src \

> APACHE_PREFIX=/opt/apache \

> EVERYTHING=1 \

> DO_HTTPD=1 \

> USE_DSO=1 \

03 0672322404 CH01 10/31/02 2:26 PM Page 29

30 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

> USE_APACI=1 \

> APACI_ARGS=’--enable-module=rewrite \

> --enable-module=info \

> --enable-module=expires \

> --disable-module=userdir \

> --with-layout=opt’

Comments

Although not mod_perl-specific, knowing how to tweak your installation is sometimes
helpful. By default, Apache uses --with-layout=Apache, which installs the httpd binary
and supporting files and documentation into /usr/local/apache. If you want to
change this behavior, you can either specify a pre-existing layout from config.layout,
or add your own layout to the file. In either case, customizing the layout of Apache is
then as simple as adding the --with-layout argument to APACI_ARGS and then
matching the config.layout prefix option to the APACHE_PREFIX argument to perl
Makefile.PL. Keep in mind that APACHE_PREFIX overrides the --prefix directive within
config.layout, so unless the two match exactly you will not end up with the layout
you expect.

1.10. Adding mod_perl to an Existing Apache Server

You have an Apache server installed and want to add mod_perl to it.

Technique

Build mod_perl outside of the Apache environment using APXS.

$ perl Makefile.PL \

> USE_APXS=1 \

> WITH_APXS=/usr/local/apache/bin/apxs \

> EVERYTHING=1

Comments

With USE_DSO=1 in your build arguments, mod_perl not only adds itself to Apache as a
DSO, but it also builds Apache at the same time. Because the purpose of using a
module as a DSO is to prevent having to rebuild Apache every time you add a module,
this feature is convenient but not ideal.

03 0672322404 CH01 10/31/02 2:26 PM Page 30

31CHAPTER I Installing mod_perl

Using the APXS (APache eXtenSion) toolkit, you can build mod_perl as a DSO outside
of the Apache source tree and without rebuilding your Apache binary. All that is
necessary is to have mod_so.c (which provides DSO support) statically compiled into
Apache. Then, after building mod_perl using APXS, you can enable mod_perl using the
LoadModule directive, as described in Recipe 1.7.

You may notice the mod_perl build process returning warnings (such as pthreads or
uselargefiles warnings) about how your current perl will affect your existing Apache
binary. However, the mod_perl build process will usually give you some direction as to
steps to take to remedy the situation so that your build will be successful.

1.11. Reusing Configuration Directives

You want to create a file to reuse your configuration directives.

Technique

Store your build arguments in makepl_args.mod_perl.

file makepl_args.mod_perl

APACHE_SRC=../apache_1.3.22/src

APACHE_PREFIX=/usr/local/apache

EVERYTHING=1

DO_HTTPD=1

USE_APACI=1

APACI_ARGS=--enable-module=rewrite, --enable-module=info

Comments

To ease the pain of having to type your configuration directives over and over again
(or so that you can remember exactly what you typed last month), mod_perl provides a
way to supply build arguments from a file. Currently, Makefile.PL will look for its
arguments in the following files relative to the mod_perl sources (in the following
order):

./makepl_args.mod_perl

../makepl_args.mod_perl

./.makepl_args.mod_perl

../.makepl_args.mod_perl

$ENV{HOME}/.makepl_args.mod_perl

03 0672322404 CH01 10/31/02 2:26 PM Page 31

32 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

It is important to note that although we were able to break up the APACI_ARGS
argument onto separate lines when building from the command line,
makepl_args.mod_perl requires one argument per line. An alternative syntax is to
place each APACI argument on a separate line:

APACI_ARGS=--enable-module=rewrite

APACI_ARGS=--enable-module=info

Also note the absence of enclosing ticks for APACI_ARGS, which is also different from
the command-line syntax.

1.12. Re-Creating a mod_perl Installation

You want to know how mod_perl was built so that you can build another similar binary.

Technique

Look at the generated files mod_perl.config and config.status.

Comments

Unfortunately, mod_perl does not stash its compile options away so that you can just
port a file to a new machine and make an identical build. However, if you use APACI to
install Apache and either APACI or APXS to install mod_perl, two files can help.
config.status is found in the root directory of the Apache source tree, while
mod_perl.config can be located in one of two places: either the apaci/ directory in
the mod_perl source tree (for APXS builds) or in src/modules/perl/ in the Apache
source tree (for APACI builds). Between these two files, you can determine which
options were enabled at build time and re-create an existing installation. Note that, at
the present time, these files are not generated for a Win32 build.

1.13. Distributing mod_perl to Many Machines

You want to prepare mod_perl for distribution across multiple machines.

Technique

Use make targets tar_Apache or offsite-tar (for Unix) or ppd (for Win32).

03 0672322404 CH01 10/31/02 2:26 PM Page 32

33CHAPTER I Installing mod_perl

Comments

Unlike Apache, a mod_perl installation cannot be easily moved from one machine to
another—there is more than the httpd binary to worry about. If you have many
machines that require a mod_perl installation, building Apache and mod_perl from
source on all of them can be long and tedious. Under some Unix variants, you have
the option of using a third-party packager (such as rpm) to roll all the necessary files
together. For Windows and the other Unix platforms, this option is not viable. In
these cases, mod_perl provides some make targets that might help speed things along.

For Unix, the offsite-tar target will create a tarball called mod_perl-1.26.tar.gz in
the mod_perl source directory. It will contain all the required files for a mod_perl
build, including the necessary files from the Apache sources. This will allow you to
successfully perform an APXS build against an existing Apache installation without
also needing to have the full set of Apache sources present on the new machine. Just
unpack the file and follow the instructions for an APXS build given in Recipe 1.10.

If your httpd already contains a static mod_perl, then all you need are the Perl
modules that mod_perl installs for you. The tar_Apache target will roll these up for
you into Apache.tar, which can then be extracted into the site_perl directory on
another machine.

For Win32, the process is a bit different and requires some finesse. To create a
mod_perl PPM (Perl package manager) file as used, for example, with ActivePerl, start
by running Makefile.PL with BINARY_LOCATION specified:

C:\mod_perl> perl Makefile.PL BINARY_LOCATION=x86/mod_perl.tar.gz ...

Build mod_perl in the usual way, and then make the ppd file as

C:\mod_perl> nmake ppd

which will create mod_perl.ppd. The binary package for distribution is built as

C:\mod_perl> tar cvf mod_perl.tar blib

C:\mod_perl> gzip --best mod_perl.tar

which, in this example, is to be placed in a directory x86/ relative to the location you
put mod_perl.ppd. This can then be installed with the ppm utility as discussed in
Recipe 1.2.

03 0672322404 CH01 10/31/02 2:26 PM Page 33

34 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

This procedure is the standard one for building ppm packages in general, but for
mod_perl, you would probably also want to include the mod_perl DLL to be installed
in the Apache modules/ directory, and also include a post-install script to install it. To
do this, proceed as before in building mod_perl, and then copy
mod_perl-1.26/src/modules/win32/Release/mod_perl.so to the directory containing
the mod_perl blib/ subdirectory. Create a post-install script (say, install.ppm).

Listing 1.1 install.ppm

#!perl -w

use strict;

my $so = ‘mod_perl.so’; # name of the mod_perl dll

Get the name of the directory to install $so.

my $base =

GetString (“\nWhere should mod_perl.so be placed in?\n (q to quit)”,

‘C:/Apache/modules’) ;

if ($base eq ‘q’) {

suggest_manual(“Aborting installation ...”);

}

$base =~ s/mod_perl.so$//i;

$base =~ s!\\!/!g;

$base =~ s!/$!!;

If the directory doesn’t exist, offer to create it.

if (! -d $base) {

my $ans = GetString(“$base does not exist. Create it?”, ‘no’);

if ($ans =~ /^y/i) {

mkdir $base;

suggest_manual(“Could not create $base: $!”) if (! -d $base);

}

else {

suggest_manual(“Will not create $base.”);

}

}

Copy $so to the indicated directory.

use File::Copy;

move($so, “$base/$so”);

suggest_manual(“Moving $so to $base failed: $!”) if (! -f “$base/$so”);

03 0672322404 CH01 10/31/02 2:26 PM Page 34

35CHAPTER I Installing mod_perl

print “$so has been successfully installed \n\t to $base/$so\n”;

sleep(5); # give the user time to read, before the window closes

routine to suggest manual installation if user declines

sub suggest_manual {

my $msg = shift;

print $msg, “\n”;

print “Please install $so manually\n”;

sleep(5);

exit(0);

}

routine to get a string from a prompt, offering a default

sub GetString {

my ($prompt, $default) = @_;

printf (“%s [%s] “, $prompt, $default);

chomp ($_ = <STDIN>);

/\S/ and return $_;

/^$/ and return $default;

return;

}

The binary package is then made as

C:\mod_perl> tar cvf mod_perl.tar blib mod_perl.so install.ppm

C:\mod_perl> gzip --best mod_perl.tar

So that this post-install script runs when the mod_perl package is installed with the
ppm utility, add <INSTALL EXEC=”perl”>install.ppm</INSTALL> within the
<IMPLEMENTATION> section of mod_perl.ppd, as shown here:

<SOFTPKG NAME=”mod_perl” VERSION=”1,26_01-dev,0,0”>

<TITLE>mod_perl</TITLE>

<ABSTRACT>Embed a Perl interpreter in the Apache HTTP server</ABSTRACT>

<AUTHOR>Doug MacEachern <dougm@pobox.com></AUTHOR>

<IMPLEMENTATION>

<OS NAME=”MSWin32” />

<ARCHITECTURE NAME=”MSWin32-x86-multi-thread” />

<CODEBASE HREF=”http://ppm.example.com/ppmpackages/x86/

➥mod_perl.tar.gz” />

<INSTALL EXEC=”perl”>install.ppm</INSTALL>

</IMPLEMENTATION>

</SOFTPKG>

Listing 1.1 (continued)

03 0672322404 CH01 10/31/02 2:26 PM Page 35

36 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

1.14. Inspecting an Existing Server

You want to know what parts of the mod_perl API are available on an existing
installation.

Technique

Check the output from /perl-status?hooks, provided by Apache::Status.

First, make the required changes to httpd.conf to activate Apache::Status

PerlModule Apache::Status

<Location /perl-status>

SetHandler perl-script

PerlHandler Apache::Status

Order Allow,Deny

Allow from localhost

Allow from .example.com

</Location>

then restart Apache and fetch http://www.example.com/perl-status?hooks from your
favorite browser.

Comments

If you are in an environment where you do not have control over how mod_perl is
built, you may not have access to the entire mod_perl API. Checking which hooks
were enabled at build time may help you determine which phases are available to you,
and thus which CPAN modules can offer assistance when building your application.

perl-status?hooks just uses the built-in mod_perl::hook() and mod_perl::hooks()
methods. If you are developing a handler that might run in different environments and
you need to program intelligently around the availability of a particular hook, you can
use these methods. Beware of the spelling of the hooks—they are case sensitive.

use mod_perl_hooks;

Require ALL mod_perl hooks (i.e., EVERYTHING=1)

foreach my $hook (mod_perl::hooks()) {

die “$hook not enabled!” unless mod_perl::hook($hook);

}

03 0672322404 CH01 10/31/02 2:26 PM Page 36

37CHAPTER I Installing mod_perl

Another programmatic option is to check the global hash %Apache::MyConfig::Setup.
Apache::MyConfig is a package that is created when mod_perl is compiled. It contains
some important build information, such as enabled hooks and platform-dependent
information. You can loop through the hash to find the status of all the various build
time options.

use Apache::MyConfig;

foreach my $key (sort keys %Apache::MyConfig::Setup) {

print “$key => $Apache::MyConfig::Setup{$key}\n”;

}

Finally, if you absolutely require a particular hook, or do not want to program around
the availability of one, you can rely on mod_perl::import() to catch the availability of
the hook at compile time.
use mod_perl qw(PerlStackedHandlers PerlLogHandler);

Now we know we’re ok.

$r->push_handlers(PerlLogHandler => \&logger);

1.15. Installing Apache Modules from CPAN

You want to install an Apache module you found on CPAN.

Technique

Follow the canonical CPAN installation steps.

$ gzip -dc Apache-Module-0.01.tar.gz | tar -xvf -

$ cd Apache-Module-0.01

$ perl Makefile.PL

$ make

$ make test

$ su

Password:

make install

03 0672322404 CH01 10/31/02 2:26 PM Page 37

38 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

Comments

Part of the power of mod_perl (and Perl in general) is the power of CPAN and its
freely available modules. Nearly all the CPAN modules for mod_perl are located
under the Apache tree, indicating that they are designed for use only in a mod_perl
environment. Of course, you should read the README file and any other installation
instructions included with the distribution before attempting to install the module.
However, the preceding are the typical series of commands used for most of the
modules on CPAN, and should prove sufficient to get you on your way.

Another option for installing modules is to use the CPAN.pm module, which comes
bundled with recent Perl distributions. Upon invoking the interactive shell,

$ perl -MCPAN -e shell

cpan>

you will (the first time) be taken through a series of questions to set up your configu-
ration. Afterward, building and installing a module is as easy as

cpan> install Apache::Module

If for some reason the build or the tests (if any) fail, the module won’t be installed by
default. One nice feature of this way of installing modules is that CPAN.pm will, in most
cases, automatically detect whether the requested module requires installation of
another module, and then offer to install this one for you, as well. For more details on
the commands available, type h at the CPAN shell prompt for a summary, or see
perldoc CPAN for a more complete description.

You can also use the CPAN.pm module to install mod_perl itself; however, because of the
number of options available within mod_perl, it is recommended that you familiarize
yourself with a manual install first. Having done so, the use of makepl_args.mod_perl
(described in Recipe 1.11) for saving the arguments passed to Makefile.PL is quite
useful for use with a CPAN.pm install.

1.16. Following mod_perl Development

You want to follow mod_perl development closely.

Technique

Use anonymous CVS to obtain the most recent version of mod_perl.

03 0672322404 CH01 10/31/02 2:26 PM Page 38

39CHAPTER I Installing mod_perl

Comments

If you just cannot wait to get the latest patches or bug fixes, or you like living life on
the edge, then anonymous CVS access to the mod_perl sources is for you. First, make
sure you have CVS installed on your system, then log in and check out the mod_perl
sources (the password is “anoncvs” without the quotes).

$ cvs -d “:pserver:anoncvs@cvs.apache.org:/home/cvspublic” login

(Logging in to anoncvs@cvs.apache.org)

CVS password:

$ cvs -d “:pserver:anoncvs@cvs.apache.org:/home/cvspublic” checkout modperl

cvs server: Updating modperl

U modperl/.cvsignore

U modperl/.gdbinit

...

You will then have a modperl/ directory, from which you can build mod_perl as
described in Recipe 1.4.

To keep your sources current, every once in a while you should

$ cvs update -dP

Or, to see what has changed since you last updated, issue

$ cvs diff -u

If you don’t have access to a CVS client, tarballs of the latest mod_perl development
version are rolled every six hours and placed on http://perl.apache.org/from-cvs/.

If you just want to lurk around and watch development for a while, you can sub-
scribe to the development and cvs mailing lists by sending an empty e-mail to
dev-subscribe@perl.apache.org for discussion of development of mod_perl, or
modperl-cvs-subscribe@perl.apache.org for automatic messages whenever the
mod_perl CVS sources are modified.

1.17. Beyond Simple CVS

Simple CVS access is not enough—you want to live on the bleeding edge.

03 0672322404 CH01 10/31/02 2:26 PM Page 39

40 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

Technique

Recompile Apache and mod_perl from CVS nightly.

Comments

Building all the essential parts of mod_perl (including Perl!) from development sources
is possible, but doing so is not for the faint of heart. Although Perl, mod_perl, and
Apache are some of the most stable software products available, such experiments
should only be considered in a development environment. CVS versions are not
guaranteed to compile, let alone work. To save yourself a few headaches, make certain
you can build mod_perl and Apache from a standard, stable distribution first. After
that, you can check out Apache CVS in the same base directory as your mod_perl
CVS sources.

$ cvs -d “:pserver:anoncvs@cvs.apache.org:/home/cvspublic” checkout apache-1.3

And install the following scripts in non-root and root crontabs, respectively (see
Listings 1.2 and 1.3). Be sure to leave a suitable distance between script execution
times to allow for the speed of your connection and machine.

Listing 1.2 make.ksh

#!/bin/ksh

Keep Apache and mod_perl up to date.

Install in non-root crontab.

source=”/path/to/your/source”

echo “about to update apache\n”

cd $source/apache-1.3

cp src/CHANGES src/CHANGES.old

cvs update

echo “about to update modperl\n”

cd $source/modperl

make realclean

cp Changes Changes.old

cvs update -dP

echo “about to make modperl\n”

perl Makefile.PL \

03 0672322404 CH01 10/31/02 2:26 PM Page 40

41CHAPTER I Installing mod_perl

APACHE_SRC=$source/apache-1.3/src \

APACHE_PREFIX=/usr/local/apache \

EVERYTHING=1 \

DO_HTTPD=1 \

USE_APACI=1 \

APACI_ARGS=’--enable-module=rewrite \

--enable-module=info \

--enable-module=expires \

--disable-module=userdir’

make && make test

Listing 1.3 install.ksh

#!/bin/ksh

Keep Apache and mod_perl up to date.

Install in root crontab

#

The result is a nice diff of the change logs

for both mod_perl and Apache, emailed

directly to you.

source=”/path/to/your/source”

email=”your@email.address”

/usr/local/apache/bin/apachectl stop

cd $source/modperl

make install

>/usr/local/apache/logs/error_log

/usr/local/apache/bin/apachectl start

sleep 10

today=`date +%b” “%d”, “%Y`

cd $source/modperl

echo “\n---- mod_perl Changes ----” > Changes.diff

diff -u Changes.old Changes >> Changes.diff

Listing 1.2 (continued)

03 0672322404 CH01 10/31/02 2:26 PM Page 41

42 MOD_PERL DEVELOPER’S COOKBOOK

PART I Installation and Configuration

cd $source/apache-1.3/src

echo “\n---- Apache Changes ----” > Changes.diff

diff -u CHANGES.old CHANGES >> Changes.diff

cat /usr/local/apache/logs/error_log \

$source/modperl/Changes.diff \

$source/apache-1.3/src/Changes.diff \

| mail -s “httpd $today” $email

1.17. Building mod_perl with Different perls

You want to run mod_perl using a different version of perl than is the default on the
server itself.

Technique

Build mod_perl using the version of perl you want mod_perl to use at runtime

$ /src/bleedperl/bin/perl5.7.2 Makefile.PL \

> APACHE_SRC=../apache-1.3/src \

> APACHE_PREFIX=/usr/local/apache \

> EVERYTHING=1 \

> DO_HTTPD=1 \

> USE_APACI=1 \

> APACI_ARGS=’--enable-module=rewrite, \

> --enable-module=info, \

> --enable-module=expires, \

> --disable-module=userdir’

Comments

If you begin to get into mod_perl development, start compiling mod_perl from CVS
regularly, or just want to upgrade your installation, you may want to use a more recent
version of perl than the other applications on your box permit. Perhaps you have
some legacy code that has only been tested against 5.005 while your mod_perl
application makes copious use of the our construct introduced in 5.6.0. Building and
maintaining a mod_perl installation with a specific or separate version of perl is
actually not as complex as it sounds.

Listing 1.3 (continued)

03 0672322404 CH01 10/31/02 2:26 PM Page 42

43CHAPTER I Installing mod_perl

The perl binary you use to build mod_perl will be the one it uses at runtime. For
instance, the build options shown in the solution code use a current bleeding-edge
perl binary with the Apache CVS sources. This explanation is somewhat misleading.
Because mod_perl embeds the perl interpreter into Apache, it does not invoke perl
binary you used at build time during normal operation—the perl interpreter mod_perl
will use at runtime for its handlers, as well as for Apache::Registry scripts, is the
embedded interpreter and not the binary sitting in /usr/bin/perl.

Where the current Perl installation on your system does come into play is with the
files installed into @INC during the mod_perl build process. At runtime, mod_perl uses
the @INC of the perl interpreter it was built with to search for the various Perl modules
it needs (like Apache::Registry and Apache::Constants), as well as any Perl modules
your handlers will rely upon (like Time::HiRes). This means that you have to use the
same perl to install new modules as you used to build mod_perl for your mod_perl
handlers to have access to them.

03 0672322404 CH01 10/31/02 2:26 PM Page 43

