
APPENDIX B

Available Constants

This appendix lists some constants useful in programming the
mod_perl API. Note that the Apache::Constants class provides
access to nearly all the constants required of the Apache C API,
some of which are only required by mod_perl internals, and
others of which are rarely used in practice. Because the list is
quite large (there are over 90 of them) and generally available
via other documentation, only the constants that are genuinely
useful to the mod_perl programmer are listed here.

Handler Return Codes

All handlers must return a meaningful status. Sometimes this
status is an Apache-specific code, such as OK, and sometimes it is
an HTTP-specific code such as REDIRECT. Most of these
constants are defined in httpd.h in the Apache sources, with the
exception of DECLINE_CMD, which is defined with the other
configuration constants in http_config.h (see Table B.1).

D E V E L O P E R ’ S C O O K B O O K

23 0672322404 APB 10/31/02 2:31 PM Page 601

602 MOD_PERL DEVELOPER’S COOKBOOK

Appendixes

Table B.1 Apache-Specific Return Codes

Constant Description

OK Most handlers will return OK to register the success of the handler to
Apache.

DECLINED This constant is usually reserved for telling Apache that no action was
taken by the handler, that the handler declined to handle the phase of the
request that it was configured to process.

In some instances, such as with PerlTransHandlers, returning DECLINED is
desirable even after you have inserted some processing into the request, so
that your handler does not stomp on the default Apache mechanisms.

DONE This return code signals the end of all processing; Apache will proceed
directly to the logging phase.

DECLINE_CMD Directive handlers can return DECLINE_CMD if they want to pass that
directive back to Apache for handling. This is typically used in cases where
directive handlers want to step in only if a corresponding standard Apache
module is not found. However, like with DECLINED, it can also be used to
trick Apache into thinking that your handler has not handled the directive
when, in fact, some processing has occurred.

HTTP Return Codes

The HTTP-based constants are the official names for the HTTP/1.1 status codes.
Anything in the 400 or 500 series of responses is considered to be an error response.
Although the constants shown in Table B.2 are the ones you are most likely to
encounter, the official list is available in section 10 of the HTTP/1.1 RFC or in httpd.h
in the Apache sources. Both Apache and mod_perl provide aliases for the more
frequently used HTTP codes in order to make code more manageable. Consult
httpd.h for the complete list of aliases as well.

23 0672322404 APB 10/31/02 2:31 PM Page 602

603APPENDIX B Available Constants

Table B.2 HTTP Return Codes

HTTP
Status

Constant Code Alias Description

HTTP_OK 200 DOCUMENT_FOLLOWS Although handlers ought
to return OK and not
HTTP_OK to indicate
success, this is the
constant to check when
you want to know the
success of an HTTP
request, such as the
return value of
$sub->run().

HTTP_PARTIAL_CONTENT 206 PARTIAL_CONTENT This is used to indicate
that a portion of the
requested document
follows. Typically, this
response code is used
when byteserving and is
set by Apache internally
via the set_byterange()
method.

HTTP_MOVED_PERMANENTLY 301 MOVED This return code states
that the requested
document has moved
permanently to a new
URI. mod_dir returns
this status when it
redirects requests to
/sailboat to /sailboat/.

HTTP_MOVED_TEMPORARILY 302 REDIRECT This return code
indicates that the
requested resource has
moved temporarily to a
new URI. REDIRECT is the
standard return code for
redirects using the
Location header.

23 0672322404 APB 10/31/02 2:31 PM Page 603

604 MOD_PERL DEVELOPER’S COOKBOOK

Appendixes

HTTP_NOT_MODIFIED 304 USE_LOCAL_COPY This indicates to the
client that the document
has not been modified
when compared against
the incoming conditional
GET headers. Typically,
whether a 304 is
warranted is determined
by the
meets_conditions()

method and is not
calculated by handlers
directly.

HTTP_UNAUTHORIZED 401 AUTH_REQUIRED This is returned if the
client did not provide
proper authorization
credentials for the
request, typically
returned by
PerlAuthenHandlers and
PerlAuthzHandlers.

HTTP_FORBIDDEN 403 FORBIDDEN This is returned if the
client is not allowed to
access the requested
document, such as with a
PerlAccessHandler.

HTTP_NOT_FOUND 404 NOT_FOUND This is returned if the
requested document does
not exist.

HTTP_METHOD_NOT_ALLOWED 405 METHOD_NOT_ALLOWED This indicates that the
request method (for
example, GET, POST, or
PUT), is not allowed for
this request.

Table B.2 (continued)

HTTP
Status

Constant Code Alias Description

23 0672322404 APB 10/31/02 2:31 PM Page 604

605APPENDIX B Available Constants

HTTP_REQUEST_ENTITY_TOO_LARGE 413 None This is used to indicate
that the message body
POSTed by the client is too
large to be processed.
Usually a handler does
not return a value itself
but instead passes it on
silently from various
methods, such as
Apache::Request’s
parse().

HTTP_INTERNAL_SERVER_ERROR 500 SERVER_ERROR This return code, which
is dreaded by Web
programmers everywhere,
indicates that the server
encountered an error in
processing the request.

Directive Handler Constants

These constants correspond to the args_how field of the Apache command record as
described in Chapter 7, “Creating Handlers.” You can find the official definitions in
http_config.h in the Apache sources. These constants can be imported into your
module either explicitly or by using the :args_how import tag with
Apache::Constants. Generally, however, you do not need to actually import these
constants, because they are used as string literals in Makefile.PL, and
Apache::ExtUtils transparently transforms the literals into the necessary constant
values. Table B.3 lists the available constants, together with the respective prototype
and an example parameter list.

Table B.2 (continued)

HTTP
Status

Constant Code Alias Description

23 0672322404 APB 10/31/02 2:31 PM Page 605

606 MOD_PERL DEVELOPER’S COOKBOOK

Appendixes

Table B.3 Directive Handler Constants

Constant Prototype Parameter List Description

NO_ARGS $$ my ($cfg, $parms) Specifies that the directive is to
have no arguments. For example,
CacheNegotiatedDocs.

TAKE1 $$$ my ($cfg, $parms, $arg) Specifies that the directive takes
exactly one argument, such as
XBitHack.

FLAG $$$ my ($cfg, $parms, $arg) Specifies that the directive takes
exactly one argument, but that
argument must be either On or
Off. The argument that is passed
back in $arg is either 1 or 0,
respectively. An example of this
directive is ExtendedStatus.

TAKE2 $$$$ my ($cfg, $parms, $arg1, This specifies that the directive
$arg2) takes exactly two arguments. For

example, LoadModule.

TAKE12 $$$;$ my ($cfg, $parms, $arg1, Specifies that the directive can
$arg2) accept either one or two

arguments, such as the LogFormat
directive.

TAKE3 $$$$$ my ($cfg, $parms, $arg1, The directive accepts exactly three
$arg2, $arg3) arguments. No modules in the

standard distribution use this
prototype.

TAKE13 none my ($cfg, $parms, $arg1, The directive accepts either one
$arg2, $arg3) or three arguments. No modules

in the standard distribution use
this prototype. There is also no
Perl subroutine prototype
specified in the mod_perl sources
at this time. In reality, you only
need to specify a subroutine
prototype if you do not specify a
value to the args_how field in your
Makefile.PL, so the lack of a Perl
prototype does not prohibit you
from using TAKE13 as a directive
prototype. Apache still does the
job of checking your argument list
for the proper format.

23 0672322404 APB 10/31/02 2:31 PM Page 606

607APPENDIX B Available Constants

TAKE23 $$$$;$ my ($cfg, $parms, $arg1, The directive accepts either two
$arg2, $arg3) or three arguments, such as the

CustomLog directive.

TAKE123 $$$;$$ my ($cfg, $parms, $arg1, The directive accepts one, two, or
$arg2, $arg3) three arguments. No modules in

the standard distribution use this
prototype. This is the default
prototype when no prototype is
given.

ITERATE $$@ my ($cfg, $parms, $arg) The directive can be called with
any number of arguments. The
directive handler is called once for
each argument. AddHandler is an
example of this prototype.

ITERATE2 $$@;@ my ($cfg, $parms, $arg1, The directive is called with two or
$arg2) more arguments. The directive

handler is called once for each
argument save the first, which is
passed as the first argument
during each iteration. The
AddLanguage directive provides an
example of this prototype.

RAW_ARGS $$$;* my ($cfg, $parms, $args, The directive parsing is left
$fh) completely to the directive

handler. $args represents the
remainder of the line following
the directive, and $fh is an open
filehandle on httpd.conf for
reading the configuration data
directly. In addition to all
container directives, RAW_ARGS is
also used for the UserDir and
several other directives.

The constants in Table B.4 correspond to the req_override field of the Apache
command record, as described in Chapter 7, “Creating Handlers.” You can find the
official definitions in http_config.h in the Apache sources. These constants can be
imported into your module either explicitly or by using the :override import tag with
Apache::Constants. Table B.2 lists the various places a directive can appear within a
configuration. <Directory> really means <Directory>, <Location>, <Files>, and all

Table B.3 (continued)

Constant Prototype Parameter List Description

23 0672322404 APB 10/31/02 2:31 PM Page 607

608 MOD_PERL DEVELOPER’S COOKBOOK

Appendixes

their regular expression matching cousins. .htaccess can be any file specified with the
AccessFileName directive. Keep in mind that while these various values can be bitwise
ORed together, the only combination that adds any real value is
RSRC_CONF|ACCESS_CONF, which is why it is a separate entry in the table. Also note that
OR_ALL is the default.

Table B.4 Directive Override Constants

Directive Constant Can Appear Inside Can Appear Inside Can Appear Outside
.htaccess <Directory>, etc. <Directory>, etc.

RSRC_CONF No No Yes

ACCESS_CONF No Yes No

RSRC_CONF| No Yes Yes
ACCESS_CONF

OR_ALL Yes Yes Yes

OR_AUTHCFG Yes, with
AuthConfig override Yes No

OR_LIMIT Yes, with Limit
override Yes No

OR_FILEINFO Yes, with FileInfo
override Yes Yes

OR_INDEXES Yes, with Indexes
override Yes Yes

OR_OPTIONS Yes, with Options
override Yes Yes

Logging Constants

These constants correspond to the various settings of the LogLevel directive. Due to
the way they are implemented within mod_perl, they are part of the Apache::Log class
and not the Apache::Constants class. They also do not need to be imported into your
handler specifically; a simple use Apache::Log; is sufficient to be able to use all these
constants within your code. Note that in the current implementation, a LogLevel of
debug has the highest numerical value, and emerg the lowest, which is the opposite of
what you might expect.

23 0672322404 APB 10/31/02 2:31 PM Page 608

609APPENDIX B Available Constants

use Apache::Log;

$r->server->log->info(‘LogLevel is info or debug...’)

if $r->server->loglevel >= Apache::Log::INFO;

The LogLevel constants are

• Apache::Log::EMERG

• Apache::Log::ALERT

• Apache::Log::CRIT

• Apache::Log::ERR

• Apache::Log::WARNING

• Apache::Log::NOTICE

• Apache::Log::INFO

• Apache::Log::DEBUG

Server Constants

Table B.5 shows the two constants that are available from the Apache::Constants class
that are really Apache API calls underneath, and which are useful for digging out base
server information.

Table B.5 SERVER_BUILT and SERVER_VERSION

Constant Name Description

SERVER_BUILT Returns the date and time the httpd binary was compiled.

SERVER_VERSION Returns the Apache version as specified in the ServerTokens
directive and/or the $Apache::Server::AddPerlVersion global.

23 0672322404 APB 10/31/02 2:31 PM Page 609

