Testing PHP with Perl

Chris Shiflett
shiflett@php.net

Geoffrey Young
geoff@emodperlcookbook.org

Why Perl?

* Testing has become very fashionable
within the Perl community

* Perl testing tools are mature

* Some of these tools were designed for
Apache

* PHP has strong Apache roots
* Ergo, Perl can help test PHP

— unless you're using IIS, in which case you have
bigger problems than testing

2

Really!

* The Perl testing community has put
lots of work into our tools to

— make automating tests easy
— make writing tests intuitive

* The Perl-centric Apache community
has brought the goodness to Apache

* There is no reason why PHP can't take
advantage of both

Building Apache + PHP

tar -xvzf apache 1.3.31.tar.gz

tar -xvzf php-5.0.2.tar.gz

cd apache_1.3.31

./configure

cd ../php-5.0.2

./configure --prefix=/usr/local/php \
--with-apache=../apache_1.3.31 --with-pear \
--with-gd --with-mysgl=/usr/local/mysqgl \

--enable-sockets --with-zlib-dir=/usr/include
make

sudo make install

cd ../apache 1.3.31
./configure --prefix=/usr/local/apache \
--activate-module=src/modules/php5/1libphp5.a \

- -enable-module=most --enable-shared=max
make

sudo make install

tar -xvzf apache 1.3.31.tar.gz

tar -xvzf php-5.0.2.tar.gz

cd apache _1.3.31

./configure

cd ../php-5.0.2

./configure --prefix=/usr/local/php \
--with-apache=../apache_1.3.31 --with-pear \
--with-gd --with-mysgl=/usr/local/mysqgl \

--enable-sockets --with-zlib-dir=/usr/include
make

sudo make install

cd ../apache 1.3.31

./configure --prefix=/usr/local/apache \
--activate-module=src/modules/php5/1libphp5.a \
- -enable-module=most

make

sudo make install

Getting Apache-Test

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic
login

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic co httpd-test
cd httpd-test/perl-framework/Apache-Test

perl Makefile.PL
make
sudo make install

Test Automation

* Perl distributions typically start with a
Makefile.PL

$ perl Makefile.PL

* This generates a Makefile with a bunch
of useful make targets

$ make
$ sudo make install
$ make test

make test

 The test target is the basis for Perl
testing

e make test Will

—search for *. t files under t/

— execute them
— collect results
—write out a final report

So What?

« "We don't care about Perl. How does
this help us?" you ask...

 Enter Apache-Test

Apache-Test

* Framework for testing Apache-based
application components

» Gives you a self-contained, pristine
Apache environment

* Provides HTTP-centric testing tools for
client-side tests

* Provides PHP-centric testing tools for
server-side tests

— if you use the libraries from current CVS that I added for this talk

10

The test Target

 With Apache-Test, make test will

—configure Apache
—start Apache

— execute the tests
—issue the report
—stop Apache

* All you need to do is write the tests
—and get Apache-Test working

11

Integration Mechanics

1. Generate the test harness
2. Configure Apache

Step 1 - The Test Harness

« Generally starts from Makefile.PL
* There are other ways as well

Makefile.PL

use Apache: :TestMM gw(test clean) ;
use Apache: :TestRunPHP () ;

configure tests based on i1ncoming arguments
Apache: :TestMM: :filter args() ;

generate the test harness (t/TEST)
Apache: :TestRunPHP->generate script () ;

14

Step 1 - The Test Harness

* Don't get bogged down with
Makefile.PL details

Step 1 - The Test Harness

* Don't get bogged down with
Makefile.PL details

16

Integration Mechanics

1. Generate the test harness
2. Configure Apache

Step 2 - Configure Apache

» Apache needs a basic configuration to
service requests
— ServerRoot
— DocumentRoOtC
— ErrorLog
—Listen

« Apache-Test "intuits" these
* But uses the exact same httpd binary

18

Apache-Test Intuition

 Apache-Test provides server defaults

_ ServerRoot t/

— DocumentRoot t/htdocs

— ErrorLog t/logs/error_log
—Listen 8529

« Also provides an initial index.html
http://localhost:8529/index.html

* You will need some PHP stuff

19

Adding to the Default Config

« Supplement default httpd.conf with
custom configurations

e Create t/conf/extra.conf.in

extra.conf.in

« Same directives as httpd.conf
e Pulled into httpd.conf via Include

» Allow for some fancy variable
substitutions

21

Create the Configuration

* We will be doing PHP specific stuff

* Let's add some standard PHP
configuration directives

r— i

extra.conr.in

AddType application/x-httpd-php .php
DirectoryIndex index.php index.html

<IfModule @PHP MODULE@>

php_flag display errors Off

php_flag log_errors On

php value error log @ServerRoot@/logs/php errors
</IfModule>

<Files ~ "\. (inc|sglite) ">
Order allow,deny
Deny from all

</Files>

23

Integration Mechanics

1. Generate the test harness

2. Configure Apache

3. Write the tests

4. Install the application into our tree

The t/ Directory

* t/ is the ServerRoot
—t/htdocs
—t/cgi-bin
—t/logs

« Tests live in t/

Admin Application

—t/htdocs/admin/index.php
— t/htdocs/admin/add. php
—t/htdocs/admin/delete.php

26

Let's Test This Puppy

* The old way of testing an application
was to fire up a browser

* Browser-based testing is so pre-bubble

 Apache-Test glves you a server just
waliting to receive requests

* Perl provides lots of tools to automate
the client-side

* Apache-Test provides magic for
automated server-side PHP testing

27

Anatomy of a Test

* In the Perl testing world everyone
does testing essentially the same way

e Create t/foo.t

« plan () the number of tests

 call ok () for each test you plan

—where ok () is any one of a number of
different functions

» All the rest is up to you

28

Perl versus PHP

« Apache-Test is a Perl tool
—uses Perl to call test scripts in t/
— t/ scripts act as a browser

* PHP support is a bit different

—still uses Perl scripts as a browser

—additional clients are autogenerated to
call PHP server-side tests

29

Client versus Server

* Let's start with some client-side
examples

* Show the cool server-side PHP stuff
you really care about soon

 It's important to see the difference

30

t /admin.t

use Apache: :TestRequest;
use Test::More;

plan tests => 3;

my $uri = '/admin/';

{

my $response = GET $uri;

is ($response->code,
401,
"no valid password entry") ;

31

Apache: :TestRequest

* Provides a basic HTTP interface like
PEAR: :HTTP Client

_GET ()
— POST ()
—HEAD ()

—etc...

* Functions are self-aware
— know which server and port to talk to

32

Tegst: :More

» Interface into the Perl testing harness

* Provides simple functions so you don't
need to print 1..2\nl1 ok\n2 ok\n

—ok ()
—1s ()
—1like ()
* Takes care of bookkeeping
—plan ()

33

ok ()

* Used for simple comparisons
ok ($foo == $bar, '$foo equals $bar')

* Gives little diagnostic output on failure

not ok 1 - $foo equal to $bar
Falled test (test.pl at line 8)

34

1s ()

« Almost the same as ok ()
is ($foo, $bar, '$foo equals $bar')

* Gives better diagnostic output on
failure

not ok 1 - $foo 1is $bar

Falled test (test.pl at line 8)
got: '1'

H# expected: '2'

35

like ()

* Regular expression matching
like($foo, gr/foo/, '$foo matches /foo/)

not ok 1 - $foo matches /foo/

Failed test (test.pl at line 7)
'bar'

doesn't match '(?-xism:foo) "

36

t /admin.t

my $response = GET $uri, username

is

password

($response->code,
401,
"password mismatch") ;

my $response = GET $uri, username

is

password

($response->code,
200,
"admin allowed to proceed") ;

=>
=>

=>
=>

'geoff!',
'foo';

'admin',
'adminpass';

37

t /admin.t

my $response = GET $uri, username

is

password

($response->code,
401,
"password mismatch") ;

my $response = GET $uri, username

is

password

($response->code,
200,
"admin allowed to proceed") ;

=>
=>

=>
=>

'geoff!',
'foo';

'admin',
'adminpass';

38

Drumroll...

 And now, what you really came here to
see...

39

test more.inc

 Apache-Test provides test_more.inc

* test _more.inc is PHP's Test: :More
—ok ()
—1s()
_like ()
—plan()
—etc

 include_path is adjusted

<?php require 'test more.inc'; ?>

40

PHP Server-Side Tests

* YOU Can use test more.inc functions

to communicate with the Perl test
harness

c How?

PHP Mechanics

* Create PHP scripts as
t /response/TestFoo/bar.php

« Apache-Test Will automagically create a
client-side Perl script that calls bar.php

t/foo/bar.t

* make test Will
—Fun bar.t
— which will request bar.php
— which will send data to the test harness

42

<?php

1f (!check admin ($user,

{

exit;

admin/index.php

include '../functions.inc';

$password))

echo '<p>Access Denied</p>"';

43

check admin ()

function check_ _admin ($user, $pass)

{
1f ($user == 'admin' && $pass == 'adminpass')
{

return true;

}

header ('"HTTP/1.0 401 Unauthorized') ;
header ('WWW-Authenticate: Basic realm="foo"') ;

return false;

44

O05check admin.php

<?php

requlire 'test _more.inc';

require "{$ SERVER['DOCUMENT ROOT']}/
functions.inc";

plan(2) ;

{

$rc = check _admin('user', 'password') ;
ok (!$rc, 'mon-admin user/pass fails');
}
{
$rc = check_ _admin('admin', 'adminpass') ;

ok ($rc, 'admin user/pass found') ;

45

Odencrypt password.php

require 'test more.inc';
require "{$ SERVER['DOCUMENT ROOT']}/functions.inc";

plan(3) ;

{
$password = 'funkyfunky';

$newpass = encrypt_password ($password) ;
the returned password should be different
isnt ($newpass,

$password,
'password is at least different');

46

Odencrypt password.php

and that it has basic md5 characteristics,
such as being 32 characters long
1s (strlen ($newpass),

32,

'password 1s a proper 32 characters');

and all 32 characters must be within hex range
like ($newpass,

' /A[0-9a-fA-F] {32} ¢/,

'password consists of only hex characters');

47

Odencrypt password.php

and that it has basic md5 characteristics,
such as being 32 characters long
1s (strlen ($newpass),

32,

'password 1s a proper 32 characters');

and all 32 characters must be within hex range
like ($newpass,

' /A[0-9a-fA-F] {32} ¢/,

'password consists of only hex characters');

48

Advantages

* PHP code tested in real environment
 Self-contained environment

* Simple tools to lower the testing
barrier

* No tests in your application

49

Where is Apache-Test?

 mod_perl 2.0

* CPAN

* httpd-test project
—http://httpd.apache.org/test/

— test-devehttpd.apache.org

50

More Information

perl.com

http://www.perl.com/pub/a/2003/05/22/testing.html

Apache-Test tutorial

e http://perl.apache.org/docs/general/testing/testing.html

Apache-Test Mmanpages
$ man Apache: :TestRunPHP

mod_perl Developer's Cookbook
— http://www.modperlcookbook.org/

51

Slides

* These slides freely available at some long
URL you will never remember...

http://www.modperlcookbook.org/~geoff/slides/nyphp

52

